leo_parser/parser/expression.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
// Copyright (C) 2019-2025 Provable Inc.
// This file is part of the Leo library.
// The Leo library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// The Leo library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use super::*;
use leo_errors::{ParserError, Result};
use leo_span::sym;
use snarkvm::console::{account::Address, network::Network};
const INT_TYPES: &[Token] = &[
Token::I8,
Token::I16,
Token::I32,
Token::I64,
Token::I128,
Token::U8,
Token::U16,
Token::U32,
Token::U64,
Token::U128,
Token::Field,
Token::Group,
Token::Scalar,
];
impl<N: Network> ParserContext<'_, N> {
/// Returns an [`Expression`] AST node if the next token is an expression.
/// Includes struct init expressions.
pub(crate) fn parse_expression(&mut self) -> Result<Expression> {
// Store current parser state.
let prior_fuzzy_state = self.disallow_struct_construction;
// Allow struct init expressions.
self.disallow_struct_construction = false;
// Parse expression.
let result = self.parse_conditional_expression();
// Restore prior parser state.
self.disallow_struct_construction = prior_fuzzy_state;
result
}
/// Returns an [`Expression`] AST node if the next tokens represent
/// a ternary expression. May or may not include struct init expressions.
///
/// Otherwise, tries to parse the next token using [`parse_boolean_or_expression`].
pub(super) fn parse_conditional_expression(&mut self) -> Result<Expression> {
// Try to parse the next expression. Try BinaryOperation::Or.
let mut expr = self.parse_boolean_or_expression()?;
// Parse the rest of the ternary expression.
if self.eat(&Token::Question) {
let if_true = self.parse_expression()?;
self.expect(&Token::Colon)?;
let if_false = self.parse_expression()?;
expr = Expression::Ternary(TernaryExpression {
span: expr.span() + if_false.span(),
condition: Box::new(expr),
if_true: Box::new(if_true),
if_false: Box::new(if_false),
id: self.node_builder.next_id(),
});
}
Ok(expr)
}
/// Constructs a binary expression `left op right`.
fn bin_expr(node_builder: &NodeBuilder, left: Expression, right: Expression, op: BinaryOperation) -> Expression {
Expression::Binary(BinaryExpression {
span: left.span() + right.span(),
op,
left: Box::new(left),
right: Box::new(right),
id: node_builder.next_id(),
})
}
/// Parses a left-associative binary expression `<left> token <right>` using `f` for left/right.
/// The `token` is translated to `op` in the AST.
fn parse_bin_expr(
&mut self,
tokens: &[Token],
mut f: impl FnMut(&mut Self) -> Result<Expression>,
) -> Result<Expression> {
let mut expr = f(self)?;
while let Some(op) = self.eat_bin_op(tokens) {
expr = Self::bin_expr(self.node_builder, expr, f(self)?, op);
}
Ok(expr)
}
/// Returns an [`Expression`] AST node if the next tokens represent
/// a binary OR expression.
///
/// Otherwise, tries to parse the next token using [`parse_boolean_and_expression`].
fn parse_boolean_or_expression(&mut self) -> Result<Expression> {
self.parse_bin_expr(&[Token::Or], Self::parse_boolean_and_expression)
}
/// Returns an [`Expression`] AST node if the next tokens represent a
/// binary AND expression.
///
/// Otherwise, tries to parse the next token using [`parse_equality_expression`].
fn parse_boolean_and_expression(&mut self) -> Result<Expression> {
self.parse_bin_expr(&[Token::And], Self::parse_equality_expression)
}
fn eat_unary_op(&mut self) -> Option<UnaryOperation> {
self.eat_any(&[Token::Not, Token::Sub]).then(|| match &self.prev_token.token {
Token::Not => UnaryOperation::Not,
Token::Sub => UnaryOperation::Negate,
_ => panic!("Can't happen."),
})
}
/// Eats one of binary operators matching any in `tokens`.
fn eat_bin_op(&mut self, tokens: &[Token]) -> Option<BinaryOperation> {
self.eat_any(tokens).then(|| match &self.prev_token.token {
Token::Eq => BinaryOperation::Eq,
Token::NotEq => BinaryOperation::Neq,
Token::Lt => BinaryOperation::Lt,
Token::LtEq => BinaryOperation::Lte,
Token::Gt => BinaryOperation::Gt,
Token::GtEq => BinaryOperation::Gte,
Token::Add => BinaryOperation::Add,
Token::Sub => BinaryOperation::Sub,
Token::Mul => BinaryOperation::Mul,
Token::Div => BinaryOperation::Div,
Token::Rem => BinaryOperation::Rem,
Token::Or => BinaryOperation::Or,
Token::And => BinaryOperation::And,
Token::BitOr => BinaryOperation::BitwiseOr,
Token::BitAnd => BinaryOperation::BitwiseAnd,
Token::Pow => BinaryOperation::Pow,
Token::Shl => BinaryOperation::Shl,
Token::Shr => BinaryOperation::Shr,
Token::BitXor => BinaryOperation::Xor,
_ => unreachable!("`eat_bin_op` shouldn't produce this"),
})
}
/// Returns an [`Expression`] AST node if the next tokens represent a
/// binary relational expression: less than, less than or equals, greater than, greater than or equals.
///
/// Otherwise, tries to parse the next token using [`parse_additive_expression`].
fn parse_ordering_expression(&mut self) -> Result<Expression> {
let mut expr = self.parse_bitwise_exclusive_or_expression()?;
if let Some(op) = self.eat_bin_op(&[Token::Lt, Token::LtEq, Token::Gt, Token::GtEq]) {
let right = self.parse_bitwise_exclusive_or_expression()?;
expr = Self::bin_expr(self.node_builder, expr, right, op);
}
Ok(expr)
}
/// Returns an [`Expression`] AST node if the next tokens represent a
/// binary equals or not equals expression.
///
/// Otherwise, tries to parse the next token using [`parse_ordering_expression`].
fn parse_equality_expression(&mut self) -> Result<Expression> {
let mut expr = self.parse_ordering_expression()?;
if let Some(op) = self.eat_bin_op(&[Token::Eq, Token::NotEq]) {
let right = self.parse_ordering_expression()?;
expr = Self::bin_expr(self.node_builder, expr, right, op);
}
Ok(expr)
}
/// Returns an [`Expression`] AST node if the next tokens represent a
/// bitwise exclusive or expression.
///
/// Otherwise, tries to parse the next token using [`parse_bitwise_inclusive_or_expression`].
fn parse_bitwise_exclusive_or_expression(&mut self) -> Result<Expression> {
self.parse_bin_expr(&[Token::BitXor], Self::parse_bitwise_inclusive_or_expression)
}
/// Returns an [`Expression`] AST node if the next tokens represent a
/// bitwise inclusive or expression.
///
/// Otherwise, tries to parse the next token using [`parse_bitwise_and_expression`].
fn parse_bitwise_inclusive_or_expression(&mut self) -> Result<Expression> {
self.parse_bin_expr(&[Token::BitOr], Self::parse_bitwise_and_expression)
}
/// Returns an [`Expression`] AST node if the next tokens represent a
/// bitwise and expression.
///
/// Otherwise, tries to parse the next token using [`parse_shift_expression`].
fn parse_bitwise_and_expression(&mut self) -> Result<Expression> {
self.parse_bin_expr(&[Token::BitAnd], Self::parse_shift_expression)
}
/// Returns an [`Expression`] AST node if the next tokens represent a
/// shift left or a shift right expression.
///
/// Otherwise, tries to parse the next token using [`parse_additive_expression`].
fn parse_shift_expression(&mut self) -> Result<Expression> {
self.parse_bin_expr(&[Token::Shl, Token::Shr], Self::parse_additive_expression)
}
/// Returns an [`Expression`] AST node if the next tokens represent a
/// binary addition or subtraction expression.
///
/// Otherwise, tries to parse the next token using [`parse_mul_div_pow_expression`].
fn parse_additive_expression(&mut self) -> Result<Expression> {
self.parse_bin_expr(&[Token::Add, Token::Sub], Self::parse_multiplicative_expression)
}
/// Returns an [`Expression`] AST node if the next tokens represent a
/// binary multiplication, division, or a remainder expression.
///
/// Otherwise, tries to parse the next token using [`parse_exponential_expression`].
fn parse_multiplicative_expression(&mut self) -> Result<Expression> {
self.parse_bin_expr(&[Token::Mul, Token::Div, Token::Rem], Self::parse_exponential_expression)
}
/// Returns an [`Expression`] AST node if the next tokens represent a
/// binary exponentiation expression.
///
/// Otherwise, tries to parse the next token using [`parse_cast_expression`].
fn parse_exponential_expression(&mut self) -> Result<Expression> {
self.parse_bin_expr(&[Token::Pow], Self::parse_cast_expression)
}
/// Returns an [`Expression`] AST node if the next tokens represent a
/// cast expression.
///
/// Otherwise, tries to parse the next token using [`parse_unary_expression`].
fn parse_cast_expression(&mut self) -> Result<Expression> {
let mut expr = self.parse_unary_expression()?;
if self.eat(&Token::As) {
let (type_, end_span) = self.parse_primitive_type()?;
let span = expr.span() + end_span;
expr = Expression::Cast(CastExpression {
expression: Box::new(expr),
type_,
span,
id: self.node_builder.next_id(),
});
}
Ok(expr)
}
/// Returns an [`Expression`] AST node if the next tokens represent a
/// unary not, negate, or bitwise not expression.
///
/// Otherwise, tries to parse the next token using [`parse_postfix_expression`].
pub(super) fn parse_unary_expression(&mut self) -> Result<Expression> {
let token_span = self.token.span;
let Some(op) = self.eat_unary_op() else {
return self.parse_postfix_expression();
};
let mut inner = self.parse_unary_expression()?;
// Try to construct a negative literal.
if let UnaryOperation::Negate = op {
use Literal::*;
if let Expression::Literal(
Integer(_, string, span, _) | Field(string, span, _) | Group(string, span, _) | Scalar(string, span, _),
) = &mut inner
{
if !string.starts_with('-') {
// The operation was a negation and the literal was not already negative, so fold it in.
string.insert(0, '-');
*span = token_span + *span;
return Ok(inner);
}
}
}
Ok(Expression::Unary(UnaryExpression {
span: token_span + inner.span(),
op,
receiver: Box::new(inner),
id: self.node_builder.next_id(),
}))
}
// TODO: Parse method call expressions directly and later put them into a canonical form.
/// Returns an [`Expression`] AST node if the next tokens represent a
/// method call expression.
fn parse_method_call_expression(&mut self, receiver: Expression, method: Identifier) -> Result<Expression> {
// Parse the argument list.
let (mut args, _, span) = self.parse_expr_tuple()?;
let span = receiver.span() + span;
if let (true, Some(op)) = (args.is_empty(), UnaryOperation::from_symbol(method.name)) {
// Found an unary operator and the argument list is empty.
Ok(Expression::Unary(UnaryExpression {
span,
op,
receiver: Box::new(receiver),
id: self.node_builder.next_id(),
}))
} else if let (1, Some(op)) = (args.len(), BinaryOperation::from_symbol(method.name)) {
// Found a binary operator and the argument list contains a single argument.
Ok(Expression::Binary(BinaryExpression {
span,
op,
left: Box::new(receiver),
right: Box::new(args.swap_remove(0)),
id: self.node_builder.next_id(),
}))
} else if let (2, Some(CoreFunction::SignatureVerify)) =
(args.len(), CoreFunction::from_symbols(sym::signature, method.name))
{
Ok(Expression::Access(AccessExpression::AssociatedFunction(AssociatedFunction {
variant: Identifier::new(sym::signature, self.node_builder.next_id()),
name: method,
arguments: {
let mut arguments = vec![receiver];
arguments.extend(args);
arguments
},
span,
id: self.node_builder.next_id(),
})))
} else if let (0, Some(CoreFunction::FutureAwait)) =
(args.len(), CoreFunction::from_symbols(sym::Future, method.name))
{
Ok(Expression::Access(AccessExpression::AssociatedFunction(AssociatedFunction {
variant: Identifier::new(sym::Future, self.node_builder.next_id()),
name: method,
arguments: vec![receiver],
span,
id: self.node_builder.next_id(),
})))
} else {
// Attempt to parse the method call as a mapping operation.
match (args.len(), CoreFunction::from_symbols(sym::Mapping, method.name)) {
(1, Some(CoreFunction::MappingGet))
| (2, Some(CoreFunction::MappingGetOrUse))
| (2, Some(CoreFunction::MappingSet))
| (1, Some(CoreFunction::MappingRemove))
| (1, Some(CoreFunction::MappingContains)) => {
// Found an instance of `<mapping>.get`, `<mapping>.get_or_use`, `<mapping>.set`, `<mapping>.remove`, or `<mapping>.contains`.
Ok(Expression::Access(AccessExpression::AssociatedFunction(AssociatedFunction {
variant: Identifier::new(sym::Mapping, self.node_builder.next_id()),
name: method,
arguments: {
let mut arguments = vec![receiver];
arguments.extend(args);
arguments
},
span,
id: self.node_builder.next_id(),
})))
}
_ => {
// Either an invalid unary/binary operator, or more arguments given.
self.emit_err(ParserError::invalid_method_call(receiver, method, args.len(), span));
Ok(Expression::Err(ErrExpression { span, id: self.node_builder.next_id() }))
}
}
}
}
/// Returns an [`Expression`] AST node if the next tokens represent a
/// static access expression.
fn parse_associated_access_expression(&mut self, module_name: Expression) -> Result<Expression> {
// Ensure that the preceding expression is an identifier (a named type).
let variant = if let Expression::Identifier(ident) = module_name {
ident
} else {
return Err(ParserError::invalid_associated_access(&module_name, module_name.span()).into());
};
// Parse the constant or function name.
let member_name = self.expect_identifier()?;
// Check if there are arguments.
Ok(Expression::Access(if self.check(&Token::LeftParen) {
// Parse the arguments
let (args, _, end) = self.parse_expr_tuple()?;
// Return the associated function.
AccessExpression::AssociatedFunction(AssociatedFunction {
span: module_name.span() + end,
variant,
name: member_name,
arguments: args,
id: self.node_builder.next_id(),
})
} else {
// Return the associated constant.
AccessExpression::AssociatedConstant(AssociatedConstant {
span: module_name.span() + member_name.span(),
ty: Type::Identifier(variant),
name: member_name,
id: self.node_builder.next_id(),
})
}))
}
/// Parses a tuple of `Expression` AST nodes.
pub(crate) fn parse_expr_tuple(&mut self) -> Result<(Vec<Expression>, bool, Span)> {
self.parse_paren_comma_list(|p| p.parse_expression().map(Some))
}
/// Parses an external function call `credits.aleo/transfer()` or locator `token.aleo/accounts`.
///
/// In the ABNF grammar,
/// an external function call is one of the two kinds of free function calls,
/// namely the one that uses a locator to designate the function;
/// a locator is a kind of primary expression.
fn parse_external_resource(&mut self, expr: Expression, network_span: Span) -> Result<Expression> {
// Parse `/`.
self.expect(&Token::Div)?;
// Parse name.
let name = self.expect_identifier()?;
// Ensure the preceding expression is a (program) identifier.
let program: Identifier = match expr {
Expression::Identifier(identifier) => identifier,
_ => unreachable!("Function called must be preceded by a program identifier."),
};
// Parsing a '{' means that user is trying to illegally define an external record.
if self.token.token == Token::LeftCurly {
return Err(ParserError::cannot_define_external_record(expr.span() + name.span()).into());
}
// If there is no parenthesis, then it is a locator.
if self.token.token != Token::LeftParen {
// Parse an external resource locator.
return Ok(Expression::Locator(LocatorExpression {
program: ProgramId {
name: program,
network: Identifier { name: sym::aleo, span: network_span, id: self.node_builder.next_id() },
},
name: name.name,
span: expr.span() + name.span(),
id: self.node_builder.next_id(),
}));
}
// Parse the function call.
let (arguments, _, span) = self.parse_paren_comma_list(|p| p.parse_expression().map(Some))?;
Ok(Expression::Call(CallExpression {
span: expr.span() + span,
function: Box::new(Expression::Identifier(name)),
program: Some(program.name),
arguments,
id: self.node_builder.next_id(),
}))
}
/// Returns an [`Expression`] AST node if the next tokens represent an
/// array access, struct member access, tuple access, or method call expression.
///
/// Otherwise, tries to parse the next token using [`parse_primary_expression`].
/// Note that, as mentioned in [`parse_primary_expression`],
/// this function also completes the parsing of some primary expressions
/// (as defined in the ABNF grammar),
/// which [`parse_primary_expression`] only starts to parse.
fn parse_postfix_expression(&mut self) -> Result<Expression> {
// We don't directly parse named types and identifiers in associated constants and functions
// here as the ABNF states. Rather, those named types and identifiers are parsed
// as primary expressions, and combined to form associated constants and functions here.
let mut expr = self.parse_primary_expression()?;
loop {
if self.eat(&Token::Dot) {
if self.check_int() {
// Eat a tuple member access.
let (index, span) = self.eat_whole_number()?;
expr = Expression::Access(AccessExpression::Tuple(TupleAccess {
tuple: Box::new(expr),
index,
span,
id: self.node_builder.next_id(),
}))
} else if self.eat(&Token::Leo) {
return Err(ParserError::only_aleo_external_calls(expr.span()).into());
} else if self.eat(&Token::Aleo) {
if self.token.token == Token::Div {
expr = self.parse_external_resource(expr, self.prev_token.span)?;
} else {
// Parse as address literal, e.g. `hello.aleo`.
if !matches!(expr, Expression::Identifier(_)) {
self.emit_err(ParserError::unexpected(expr.to_string(), "an identifier", expr.span()))
}
expr = Expression::Literal(Literal::Address(
format!("{}.aleo", expr),
expr.span(),
self.node_builder.next_id(),
))
}
} else {
// Parse instances of `self.address`.
if let Expression::Identifier(id) = expr {
if id.name == sym::SelfLower && self.token.token == Token::Address {
let span = self.expect(&Token::Address)?;
// Convert `self.address` to the current program name. TODO: Move this conversion to canonicalization pass when the new pass is added.
// Note that the unwrap is safe as in order to get to this stage of parsing a program name must have already been parsed.
return Ok(Expression::Literal(Literal::Address(
format!("{}.aleo", self.program_name.unwrap()),
expr.span() + span,
self.node_builder.next_id(),
)));
}
}
// Parse identifier name.
let name = self.expect_identifier()?;
if self.check(&Token::LeftParen) {
// Eat a method call on a type
expr = self.parse_method_call_expression(expr, name)?
} else {
// Eat a struct member access.
expr = Expression::Access(AccessExpression::Member(MemberAccess {
span: expr.span() + name.span(),
inner: Box::new(expr),
name,
id: self.node_builder.next_id(),
}))
}
}
} else if self.eat(&Token::DoubleColon) {
// Eat a core associated constant or core associated function call.
expr = self.parse_associated_access_expression(expr)?;
} else if self.eat(&Token::LeftSquare) {
// Eat an array access.
let index = self.parse_expression()?;
// Eat the closing bracket.
let span = self.expect(&Token::RightSquare)?;
expr = Expression::Access(AccessExpression::Array(ArrayAccess {
span: expr.span() + span,
array: Box::new(expr),
index: Box::new(index),
id: self.node_builder.next_id(),
}))
} else if self.check(&Token::LeftParen) {
// Check that the expression is an identifier.
if !matches!(expr, Expression::Identifier(_)) {
self.emit_err(ParserError::unexpected(expr.to_string(), "an identifier", expr.span()))
}
// Parse a function call that's by itself.
let (arguments, _, span) = self.parse_paren_comma_list(|p| p.parse_expression().map(Some))?;
expr = Expression::Call(CallExpression {
span: expr.span() + span,
function: Box::new(expr),
program: self.program_name,
arguments,
id: self.node_builder.next_id(),
});
}
// Stop parsing the postfix expression unless a dot or square bracket follows.
if !(self.check(&Token::Dot) || self.check(&Token::LeftSquare)) {
break;
}
}
Ok(expr)
}
/// Returns an [`Expression`] AST node if the next tokens represent
/// a parenthesized expression or a unit expression
/// or a tuple initialization expression or an affine group literal.
fn parse_tuple_expression(&mut self) -> Result<Expression> {
let (mut elements, trailing, span) = self.parse_expr_tuple()?;
match (elements.len(), trailing) {
(0, _) | (1, true) => {
// A tuple with 0 or 1 elements - emit an error since tuples must have at least two elements.
Err(ParserError::tuple_must_have_at_least_two_elements("expression", span).into())
}
(1, false) => {
// If there is one element in the tuple but no trailing comma, e.g `(foo)`, return the element.
Ok(elements.remove(0))
}
_ => {
// Otherwise, return a tuple expression.
// Note: This is the only place where `TupleExpression` is constructed in the parser.
Ok(Expression::Tuple(TupleExpression { elements, span, id: self.node_builder.next_id() }))
}
}
}
/// Returns an [`Expression`] AST node if the next tokens represent an array initialization expression.
fn parse_array_expression(&mut self) -> Result<Expression> {
let (elements, _, span) = self.parse_bracket_comma_list(|p| p.parse_expression().map(Some))?;
match elements.is_empty() {
// If the array expression is empty, return an error.
true => Err(ParserError::array_must_have_at_least_one_element("expression", span).into()),
// Otherwise, return an array expression.
// Note: This is the only place where `ArrayExpression` is constructed in the parser.
false => Ok(Expression::Array(ArrayExpression { elements, span, id: self.node_builder.next_id() })),
}
}
fn parse_struct_member(&mut self) -> Result<StructVariableInitializer> {
let identifier = self.expect_identifier()?;
let (expression, span) = if self.eat(&Token::Colon) {
// Parse individual struct variable declarations.
let expression = self.parse_expression()?;
let span = identifier.span + expression.span();
(Some(expression), span)
} else {
(None, identifier.span)
};
Ok(StructVariableInitializer { identifier, expression, id: self.node_builder.next_id(), span })
}
/// Returns an [`Expression`] AST node if the next tokens represent a
/// struct initialization expression.
/// let foo = Foo { x: 1u8 };
pub fn parse_struct_init_expression(&mut self, identifier: Identifier) -> Result<Expression> {
let (members, _, end) =
self.parse_list(Delimiter::Brace, Some(Token::Comma), |p| p.parse_struct_member().map(Some))?;
Ok(Expression::Struct(StructExpression {
span: identifier.span + end,
name: identifier,
members,
id: self.node_builder.next_id(),
}))
}
/// Returns an [`Expression`] AST node if the next token is a primary expression:
/// - Literals: field, group, unsigned integer, signed integer, boolean, address, string
/// - Aggregate type constructors: array, tuple, structs
/// - Identifiers: variables, keywords
///
/// This function only parses some of the primary expressions defined in the ABNF grammar;
/// for the others, it parses their initial parts,
/// leaving it to the [self.parse_postfix_expression] function to complete the parsing.
/// For example, of the primary expression `u8::c`, this function only parses the `u8` part,
/// leaving it to [self.parse_postfix_expression] to parse the `::c` part.
/// So technically the expression returned by this function may not quite be
/// an expression as defined in the ABNF grammar,
/// but it is only a temporary expression that is combined into a larger one
/// by [self.parse_postfix_expression], yielding an actual expression according to the grammar.
///
/// Returns an expression error if the token cannot be matched.
fn parse_primary_expression(&mut self) -> Result<Expression> {
if let Token::LeftParen = self.token.token {
return self.parse_tuple_expression();
} else if let Token::LeftSquare = self.token.token {
return self.parse_array_expression();
}
let SpannedToken { token, span } = self.token.clone();
self.bump();
Ok(match token {
Token::Integer(value) => {
let suffix_span = self.token.span;
let full_span = span + suffix_span;
let assert_no_whitespace = |x| assert_no_whitespace(span, suffix_span, &value, x);
match self.eat_any(INT_TYPES).then_some(&self.prev_token.token) {
// Hex, octal, binary literal on a noninteger is an error.
Some(Token::Field) | Some(Token::Group) | Some(Token::Scalar)
if value.starts_with("0x")
|| value.starts_with("0o")
|| value.starts_with("0b")
|| value.starts_with("-0x")
|| value.starts_with("-0o")
|| value.starts_with("-0b") =>
{
return Err(ParserError::hexbin_literal_nonintegers(span).into());
}
// Literal followed by `field`, e.g., `42field`.
Some(Token::Field) => {
assert_no_whitespace("field")?;
Expression::Literal(Literal::Field(value, full_span, self.node_builder.next_id()))
}
// Literal followed by `group`, e.g., `42group`.
Some(Token::Group) => {
assert_no_whitespace("group")?;
Expression::Literal(Literal::Group(value, full_span, self.node_builder.next_id()))
}
// Literal followed by `scalar` e.g., `42scalar`.
Some(Token::Scalar) => {
assert_no_whitespace("scalar")?;
Expression::Literal(Literal::Scalar(value, full_span, self.node_builder.next_id()))
}
// Literal followed by other type suffix, e.g., `42u8`.
Some(suffix) => {
assert_no_whitespace(&suffix.to_string())?;
let int_ty = Self::token_to_int_type(suffix).expect("unknown int type token");
Expression::Literal(Literal::Integer(int_ty, value, full_span, self.node_builder.next_id()))
}
None => return Err(ParserError::implicit_values_not_allowed(value, span).into()),
}
}
Token::True => Expression::Literal(Literal::Boolean(true, span, self.node_builder.next_id())),
Token::False => Expression::Literal(Literal::Boolean(false, span, self.node_builder.next_id())),
Token::AddressLit(address_string) => {
if address_string.parse::<Address<N>>().is_err() {
self.emit_err(ParserError::invalid_address_lit(&address_string, span));
}
Expression::Literal(Literal::Address(address_string, span, self.node_builder.next_id()))
}
Token::StaticString(value) => {
Expression::Literal(Literal::String(value, span, self.node_builder.next_id()))
}
Token::Identifier(name) => {
let ident = Identifier { name, span, id: self.node_builder.next_id() };
if !self.disallow_struct_construction && self.check(&Token::LeftCurly) {
// Parse struct and records inits as struct expressions.
// Enforce struct or record type later at type checking.
self.parse_struct_init_expression(ident)?
} else {
Expression::Identifier(ident)
}
}
Token::SelfLower => {
Expression::Identifier(Identifier { name: sym::SelfLower, span, id: self.node_builder.next_id() })
}
Token::Block => {
Expression::Identifier(Identifier { name: sym::block, span, id: self.node_builder.next_id() })
}
Token::Future => {
Expression::Identifier(Identifier { name: sym::Future, span, id: self.node_builder.next_id() })
}
Token::Network => {
Expression::Identifier(Identifier { name: sym::network, span, id: self.node_builder.next_id() })
}
t if crate::type_::TYPE_TOKENS.contains(&t) => Expression::Identifier(Identifier {
name: t.keyword_to_symbol().unwrap(),
span,
id: self.node_builder.next_id(),
}),
token => {
return Err(ParserError::unexpected_str(token, "expression", span).into());
}
})
}
}
fn assert_no_whitespace(left_span: Span, right_span: Span, left: &str, right: &str) -> Result<()> {
if left_span.hi != right_span.lo {
let error_span = Span::new(left_span.hi, right_span.lo); // The span between them.
return Err(ParserError::unexpected_whitespace(left, right, error_span).into());
}
Ok(())
}