leo_parser/tokenizer/lexer.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
// Copyright (C) 2019-2025 Provable Inc.
// This file is part of the Leo library.
// The Leo library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// The Leo library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::tokenizer::Token;
use leo_errors::{ParserError, Result};
use leo_span::{Span, Symbol};
use serde::{Deserialize, Serialize};
use std::{
fmt,
iter::{Peekable, from_fn},
};
/// Eat an identifier, that is, a string matching '[a-zA-Z][a-zA-Z\d_]*', if any.
fn eat_identifier(input: &mut Peekable<impl Iterator<Item = char>>) -> Option<String> {
input.peek().filter(|c| c.is_ascii_alphabetic())?;
Some(from_fn(|| input.next_if(|c| c.is_ascii_alphanumeric() || c == &'_')).collect())
}
/// Checks if a char is a Unicode Bidirectional Override code point
fn is_bidi_override(c: char) -> bool {
let i = c as u32;
(0x202A..=0x202E).contains(&i) || (0x2066..=0x2069).contains(&i)
}
/// Ensure that `string` contains no Unicode Bidirectional Override code points.
fn ensure_no_bidi_override(string: &str) -> Result<()> {
if string.chars().any(is_bidi_override) {
return Err(ParserError::lexer_bidi_override().into());
}
Ok(())
}
impl Token {
// todo: remove this unused code or reference https://github.com/Geal/nom/blob/main/examples/string.rs
// // Eats the parts of the unicode character after \u.
// fn eat_unicode_char(input: &mut Peekable<impl Iterator<Item = char>>) -> Result<(usize, Char)> {
// let mut unicode = String::new();
// // Account for the chars '\' and 'u'.
// let mut len = 2;
//
// if input.next_if_eq(&'{').is_some() {
// len += 1;
// } else if let Some(c) = input.next() {
// return Err(ParserError::lexer_unopened_escaped_unicode_char(c).into());
// } else {
// return Err(ParserError::lexer_empty_input_tendril().into());
// }
//
// while let Some(c) = input.next_if(|c| c != &'}') {
// len += 1;
// unicode.push(c);
// }
//
// if input.next_if_eq(&'}').is_some() {
// len += 1;
// } else {
// return Err(ParserError::lexer_unclosed_escaped_unicode_char(unicode).into());
// }
//
// // Max of 6 digits.
// // Minimum of 1 digit.
// if unicode.len() > 6 || unicode.is_empty() {
// return Err(ParserError::lexer_invalid_escaped_unicode_length(unicode).into());
// }
//
// if let Ok(hex) = u32::from_str_radix(&unicode, 16) {
// if let Some(character) = std::char::from_u32(hex) {
// Ok((len, Char::Scalar(character)))
// } else if hex <= 0x10FFFF {
// Ok((len, Char::NonScalar(hex)))
// } else {
// Err(ParserError::lexer_invalid_character_exceeded_max_value(unicode).into())
// }
// } else {
// Err(ParserError::lexer_expected_valid_hex_char(unicode).into())
// }
// }
// // Eats the parts of the hex character after \x.
// fn eat_hex_char(input: &mut Peekable<impl Iterator<Item = char>>) -> Result<(usize, Char)> {
// let mut hex = String::new();
// // Account for the chars '\' and 'x'.
// let mut len = 2;
//
// // First hex character.
// if let Some(c) = input.next_if(|c| c != &'\'') {
// len += 1;
// hex.push(c);
// } else if let Some(c) = input.next() {
// return Err(ParserError::lexer_expected_valid_hex_char(c).into());
// } else {
// return Err(ParserError::lexer_empty_input_tendril().into());
// }
//
// // Second hex character.
// if let Some(c) = input.next_if(|c| c != &'\'') {
// len += 1;
// hex.push(c);
// } else if let Some(c) = input.next() {
// return Err(ParserError::lexer_expected_valid_hex_char(c).into());
// } else {
// return Err(ParserError::lexer_empty_input_tendril().into());
// }
//
// if let Ok(ascii_number) = u8::from_str_radix(&hex, 16) {
// // According to RFC, we allow only values less than 128.
// if ascii_number > 127 {
// return Err(ParserError::lexer_expected_valid_hex_char(hex).into());
// }
//
// Ok((len, Char::Scalar(ascii_number as char)))
// } else {
// Err(ParserError::lexer_expected_valid_hex_char(hex).into())
// }
// }
// fn eat_escaped_char(input: &mut Peekable<impl Iterator<Item = char>>) -> Result<(usize, Char)> {
// match input.next() {
// None => Err(ParserError::lexer_empty_input_tendril().into()),
// // Length of 2 to account the '\'.
// Some('0') => Ok((2, Char::Scalar(0 as char))),
// Some('t') => Ok((2, Char::Scalar(9 as char))),
// Some('n') => Ok((2, Char::Scalar(10 as char))),
// Some('r') => Ok((2, Char::Scalar(13 as char))),
// Some('\"') => Ok((2, Char::Scalar(34 as char))),
// Some('\'') => Ok((2, Char::Scalar(39 as char))),
// Some('\\') => Ok((2, Char::Scalar(92 as char))),
// Some('u') => Self::eat_unicode_char(input),
// Some('x') => Self::eat_hex_char(input),
// Some(c) => Err(ParserError::lexer_expected_valid_escaped_char(c).into()),
// }
// }
// /// Returns a `char` if a character can be eaten, otherwise returns [`None`].
// fn eat_char(input: &mut Peekable<impl Iterator<Item = char>>) -> Result<(usize, Char)> {
// match input.next() {
// None => Err(ParserError::lexer_empty_input_tendril().into()),
// Some('\\') => Self::eat_escaped_char(input),
// Some(c) => Ok((c.len_utf8(), Char::Scalar(c))),
// }
// }
/// Returns a tuple: [(integer length, integer token)] if an integer can be eaten.
/// An integer can be eaten if its characters are at the front of the given `input` string.
/// If there is no input, this function returns an error.
/// If there is input but no integer, this function returns the tuple consisting of
/// length 0 and a dummy integer token that contains an empty string.
/// However, this function is always called when the next character is a digit.
/// This function eats a sequence representing a decimal numeral, a hex
/// numeral (beginning with `0x`), an octal numeral (beginning with '0o'),
/// or a binary numeral (beginning with `0b`), optionally including underscores,
/// which corresponds to a numeral in the ABNF grammar.
fn eat_integer(input: &mut Peekable<impl Iterator<Item = char>>) -> Result<(usize, Token)> {
if input.peek().is_none() {
return Err(ParserError::lexer_empty_input().into());
}
if !input.peek().unwrap().is_ascii_digit() {
return Ok((0, Token::Integer("".into())));
}
let mut int = String::new();
let first = input.next().unwrap();
int.push(first);
if first == '0' && (input.peek() == Some(&'x') || input.peek() == Some(&'o') || input.peek() == Some(&'b')) {
int.push(input.next().unwrap());
}
// Allow only uppercase hex digits, so as not to interfere with parsing the `field` suffix.
int.extend(input.take_while(|&c| c.is_ascii_digit() || c == '_' || c.is_ascii_uppercase()));
let (s, radix) = if let Some(s) = int.strip_prefix("0x") {
(s, 16)
} else if let Some(s) = int.strip_prefix("0o") {
(s, 8)
} else if let Some(s) = int.strip_prefix("0b") {
(s, 2)
} else {
(int.as_str(), 10)
};
if let Some(c) = s.chars().find(|&c| c != '_' && !c.is_digit(radix)) {
return Err(ParserError::wrong_digit_for_radix(c, radix, int).into());
}
Ok((int.len(), Token::Integer(int)))
}
/// Returns a tuple: [(token length, token)] if the next token can be eaten, otherwise returns an error.
/// The next token can be eaten if the characters at the front of the given `input` string can be scanned into a token.
pub(crate) fn eat(input: &str) -> Result<(usize, Token)> {
if input.is_empty() {
return Err(ParserError::lexer_empty_input().into());
}
let input_str = input;
let mut input = input.chars().peekable();
// Returns one token matching one character.
let match_one = |input: &mut Peekable<_>, token| {
input.next();
Ok((1, token))
};
// Returns one token matching one or two characters.
// If the `second` character matches, return the `second_token` that represents two characters.
// Otherwise, return the `first_token` that matches the one character.
let match_two = |input: &mut Peekable<_>, first_token, second_char, second_token| {
input.next();
Ok(if input.next_if_eq(&second_char).is_some() { (2, second_token) } else { (1, first_token) })
};
// Returns one token matching one or two characters.
// If the `second_char` character matches, return the `second_token` that represents two characters.
// If the `third_char` character matches, return the `third_token` that represents two characters.
// Otherwise, return the `first_token` that matches the one character.
let match_three = |input: &mut Peekable<_>, first_token, second_char, second_token, third_char, third_token| {
input.next();
Ok(if input.next_if_eq(&second_char).is_some() {
(2, second_token)
} else if input.next_if_eq(&third_char).is_some() {
(2, third_token)
} else {
(1, first_token)
})
};
// Returns one token matching one, two, or three characters.
// The `fourth_token` expects both the `third_char` and `fourth_char` to be present.
// See the example with the different combinations for Mul, MulAssign, Pow, PowAssign below.
let match_four = |
input: &mut Peekable<_>,
first_token, // e.e. Mul '*'
second_char, // e.g. '='
second_token, // e.g. MulAssign '*='
third_char, // e.g. '*'
third_token, // e.g. Pow '**'
fourth_char, // e.g. '='
fourth_token // e.g. PowAssign '**='
| {
input.next();
Ok(if input.next_if_eq(&second_char).is_some() {
// '*='
(2, second_token)
} else if input.next_if_eq(&third_char).is_some() {
if input.next_if_eq(&fourth_char).is_some() {
// '**='
return Ok((3, fourth_token))
}
// '**'
(2, third_token)
} else {
// '*'
(1, first_token)
})
};
match *input.peek().ok_or_else(ParserError::lexer_empty_input)? {
x if x.is_ascii_whitespace() => return match_one(&mut input, Token::WhiteSpace),
'"' => {
// Find end string quotation mark.
// Instead of checking each `char` and pushing, we can avoid reallocations.
// This works because the code 34 of double quote cannot appear as a byte
// in the middle of a multi-byte UTF-8 encoding of a character,
// because those bytes all have the high bit set to 1;
// in UTF-8, the byte 34 can only appear as the single-byte encoding of double quote.
let rest = &input_str[1..];
let string = match rest.as_bytes().iter().position(|c| *c == b'"') {
None => return Err(ParserError::lexer_string_not_closed(rest).into()),
Some(idx) => rest[..idx].to_owned(),
};
ensure_no_bidi_override(&string)?;
// + 2 to account for parsing quotation marks.
return Ok((string.len() + 2, Token::StaticString(string)));
}
x if x.is_ascii_digit() => return Self::eat_integer(&mut input),
'!' => return match_two(&mut input, Token::Not, '=', Token::NotEq),
'?' => return match_one(&mut input, Token::Question),
'&' => {
return match_four(
&mut input,
Token::BitAnd,
'=',
Token::BitAndAssign,
'&',
Token::And,
'=',
Token::AndAssign,
);
}
'(' => return match_one(&mut input, Token::LeftParen),
')' => return match_one(&mut input, Token::RightParen),
'_' => return match_one(&mut input, Token::Underscore),
'*' => {
return match_four(
&mut input,
Token::Mul,
'=',
Token::MulAssign,
'*',
Token::Pow,
'=',
Token::PowAssign,
);
}
'+' => return match_two(&mut input, Token::Add, '=', Token::AddAssign),
',' => return match_one(&mut input, Token::Comma),
'-' => return match_three(&mut input, Token::Sub, '=', Token::SubAssign, '>', Token::Arrow),
'.' => return match_two(&mut input, Token::Dot, '.', Token::DotDot),
'/' => {
input.next();
if input.next_if_eq(&'/').is_some() {
// Find the end of the comment line.
// This works because the code 10 of line feed cannot appear as a byte
// in the middle of a multi-byte UTF-8 encoding of a character,
// because those bytes all have the high bit set to 1;
// in UTF-8, the byte 10 can only appear as the single-byte encoding of line feed.
let comment = match input_str.as_bytes().iter().position(|c| *c == b'\n') {
None => input_str,
Some(idx) => &input_str[..idx + 1],
};
ensure_no_bidi_override(comment)?;
return Ok((comment.len(), Token::CommentLine(comment.to_owned())));
} else if input.next_if_eq(&'*').is_some() {
let mut comment = String::from("/*");
if input.peek().is_none() {
return Err(ParserError::lexer_empty_block_comment().into());
}
let mut ended = false;
while let Some(c) = input.next() {
comment.push(c);
if c == '*' && input.next_if_eq(&'/').is_some() {
comment.push('/');
ended = true;
break;
}
}
ensure_no_bidi_override(&comment)?;
if !ended {
return Err(ParserError::lexer_block_comment_does_not_close_before_eof(comment).into());
}
return Ok((comment.len(), Token::CommentBlock(comment)));
} else if input.next_if_eq(&'=').is_some() {
// '/='
return Ok((2, Token::DivAssign));
}
// '/'
return Ok((1, Token::Div));
}
'%' => return match_two(&mut input, Token::Rem, '=', Token::RemAssign),
':' => return match_two(&mut input, Token::Colon, ':', Token::DoubleColon),
';' => return match_one(&mut input, Token::Semicolon),
'<' => return match_four(&mut input, Token::Lt, '=', Token::LtEq, '<', Token::Shl, '=', Token::ShlAssign),
'>' => return match_four(&mut input, Token::Gt, '=', Token::GtEq, '>', Token::Shr, '=', Token::ShrAssign),
'=' => return match_three(&mut input, Token::Assign, '=', Token::Eq, '>', Token::BigArrow),
'[' => return match_one(&mut input, Token::LeftSquare),
']' => return match_one(&mut input, Token::RightSquare),
'{' => return match_one(&mut input, Token::LeftCurly),
'}' => return match_one(&mut input, Token::RightCurly),
'|' => {
return match_four(
&mut input,
Token::BitOr,
'=',
Token::BitOrAssign,
'|',
Token::Or,
'=',
Token::OrAssign,
);
}
'^' => return match_two(&mut input, Token::BitXor, '=', Token::BitXorAssign),
'@' => return Ok((1, Token::At)),
_ => (),
}
if let Some(identifier) = eat_identifier(&mut input) {
return Ok((
identifier.len(),
// todo: match on symbols instead of hard-coded &str's
match &*identifier {
x if x.starts_with("aleo1") => Token::AddressLit(identifier),
"address" => Token::Address,
"aleo" => Token::Aleo,
"as" => Token::As,
"assert" => Token::Assert,
"assert_eq" => Token::AssertEq,
"assert_neq" => Token::AssertNeq,
"async" => Token::Async,
"block" => Token::Block,
"bool" => Token::Bool,
"console" => Token::Console,
"const" => Token::Const,
"constant" => Token::Constant,
"else" => Token::Else,
"false" => Token::False,
"field" => Token::Field,
"Fn" => Token::Fn,
"for" => Token::For,
"function" => Token::Function,
"Future" => Token::Future,
"group" => Token::Group,
"i8" => Token::I8,
"i16" => Token::I16,
"i32" => Token::I32,
"i64" => Token::I64,
"i128" => Token::I128,
"if" => Token::If,
"import" => Token::Import,
"in" => Token::In,
"inline" => Token::Inline,
"let" => Token::Let,
"leo" => Token::Leo,
"mapping" => Token::Mapping,
"private" => Token::Private,
"program" => Token::Program,
"public" => Token::Public,
"record" => Token::Record,
"return" => Token::Return,
"scalar" => Token::Scalar,
"self" => Token::SelfLower,
"signature" => Token::Signature,
"string" => Token::String,
"struct" => Token::Struct,
"transition" => Token::Transition,
"true" => Token::True,
"u8" => Token::U8,
"u16" => Token::U16,
"u32" => Token::U32,
"u64" => Token::U64,
"u128" => Token::U128,
_ => Token::Identifier(Symbol::intern(&identifier)),
},
));
}
Err(ParserError::could_not_lex(input.take_while(|c| *c != ';' && !c.is_whitespace()).collect::<String>())
.into())
}
}
#[derive(Clone, Serialize, Deserialize)]
pub struct SpannedToken {
pub token: Token,
pub span: Span,
}
impl SpannedToken {
/// Returns a dummy token at a dummy span.
pub const fn dummy() -> Self {
Self { token: Token::Question, span: Span::dummy() }
}
}
impl fmt::Display for SpannedToken {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "'{}' @ ", self.token.to_string().trim())?;
self.span.fmt(f)
}
}
impl fmt::Debug for SpannedToken {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
<SpannedToken as fmt::Display>::fmt(self, f)
}
}