1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
// Copyright (C) 2019-2024 Aleo Systems Inc.
// This file is part of the Leo library.

// The Leo library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// The Leo library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.

use crate::CodeGenerator;
use leo_ast::{
    AccessExpression,
    ArrayAccess,
    ArrayExpression,
    AssociatedConstant,
    AssociatedFunction,
    BinaryExpression,
    BinaryOperation,
    CallExpression,
    CastExpression,
    ErrExpression,
    Expression,
    Identifier,
    Literal,
    Location,
    LocatorExpression,
    MemberAccess,
    StructExpression,
    TernaryExpression,
    TupleExpression,
    Type,
    UnaryExpression,
    UnaryOperation,
    UnitExpression,
    Variant,
};
use leo_span::sym;
use std::borrow::Borrow;

use std::fmt::Write as _;

/// Implement the necessary methods to visit nodes in the AST.
// Note: We opt for this option instead of using `Visitor` and `Director` because this pass requires
// a post-order traversal of the AST. This is sufficient since this implementation is intended to be
// a prototype. The production implementation will require a redesign of `Director`.
impl<'a> CodeGenerator<'a> {
    pub(crate) fn visit_expression(&mut self, input: &'a Expression) -> (String, String) {
        match input {
            Expression::Access(expr) => self.visit_access(expr),
            Expression::Array(expr) => self.visit_array(expr),
            Expression::Binary(expr) => self.visit_binary(expr),
            Expression::Call(expr) => self.visit_call(expr),
            Expression::Cast(expr) => self.visit_cast(expr),
            Expression::Struct(expr) => self.visit_struct_init(expr),
            Expression::Err(expr) => self.visit_err(expr),
            Expression::Identifier(expr) => self.visit_identifier(expr),
            Expression::Literal(expr) => self.visit_value(expr),
            Expression::Locator(expr) => self.visit_locator(expr),
            Expression::Ternary(expr) => self.visit_ternary(expr),
            Expression::Tuple(expr) => self.visit_tuple(expr),
            Expression::Unary(expr) => self.visit_unary(expr),
            Expression::Unit(expr) => self.visit_unit(expr),
        }
    }

    fn visit_identifier(&mut self, input: &'a Identifier) -> (String, String) {
        (
            self.variable_mapping.get(&input.name).or_else(|| self.global_mapping.get(&input.name)).unwrap().clone(),
            String::new(),
        )
    }

    fn visit_err(&mut self, _input: &'a ErrExpression) -> (String, String) {
        unreachable!("`ErrExpression`s should not be in the AST at this phase of compilation.")
    }

    fn visit_value(&mut self, input: &'a Literal) -> (String, String) {
        (format!("{input}"), String::new())
    }

    fn visit_locator(&mut self, input: &'a LocatorExpression) -> (String, String) {
        (format!("{input}"), String::new())
    }

    fn visit_binary(&mut self, input: &'a BinaryExpression) -> (String, String) {
        let (left_operand, left_instructions) = self.visit_expression(&input.left);
        let (right_operand, right_instructions) = self.visit_expression(&input.right);

        let opcode = match input.op {
            BinaryOperation::Add => String::from("add"),
            BinaryOperation::AddWrapped => String::from("add.w"),
            BinaryOperation::And => String::from("and"),
            BinaryOperation::BitwiseAnd => String::from("and"),
            BinaryOperation::Div => String::from("div"),
            BinaryOperation::DivWrapped => String::from("div.w"),
            BinaryOperation::Eq => String::from("is.eq"),
            BinaryOperation::Gte => String::from("gte"),
            BinaryOperation::Gt => String::from("gt"),
            BinaryOperation::Lte => String::from("lte"),
            BinaryOperation::Lt => String::from("lt"),
            BinaryOperation::Mod => String::from("mod"),
            BinaryOperation::Mul => String::from("mul"),
            BinaryOperation::MulWrapped => String::from("mul.w"),
            BinaryOperation::Nand => String::from("nand"),
            BinaryOperation::Neq => String::from("is.neq"),
            BinaryOperation::Nor => String::from("nor"),
            BinaryOperation::Or => String::from("or"),
            BinaryOperation::BitwiseOr => String::from("or"),
            BinaryOperation::Pow => String::from("pow"),
            BinaryOperation::PowWrapped => String::from("pow.w"),
            BinaryOperation::Rem => String::from("rem"),
            BinaryOperation::RemWrapped => String::from("rem.w"),
            BinaryOperation::Shl => String::from("shl"),
            BinaryOperation::ShlWrapped => String::from("shl.w"),
            BinaryOperation::Shr => String::from("shr"),
            BinaryOperation::ShrWrapped => String::from("shr.w"),
            BinaryOperation::Sub => String::from("sub"),
            BinaryOperation::SubWrapped => String::from("sub.w"),
            BinaryOperation::Xor => String::from("xor"),
        };

        let destination_register = format!("r{}", self.next_register);
        let binary_instruction = format!("    {opcode} {left_operand} {right_operand} into {destination_register};\n",);

        // Increment the register counter.
        self.next_register += 1;

        // Concatenate the instructions.
        let mut instructions = left_instructions;
        instructions.push_str(&right_instructions);
        instructions.push_str(&binary_instruction);

        (destination_register, instructions)
    }

    fn visit_cast(&mut self, input: &'a CastExpression) -> (String, String) {
        let (expression_operand, mut instructions) = self.visit_expression(&input.expression);

        // Construct the destination register.
        let destination_register = format!("r{}", self.next_register);
        // Increment the register counter.
        self.next_register += 1;

        let cast_instruction = format!(
            "    cast {expression_operand} into {destination_register} as {};\n",
            Self::visit_type(&input.type_)
        );

        // Concatenate the instructions.
        instructions.push_str(&cast_instruction);

        (destination_register, instructions)
    }

    fn visit_array(&mut self, input: &'a ArrayExpression) -> (String, String) {
        let (expression_operands, mut instructions) =
            input.elements.iter().map(|expr| self.visit_expression(expr)).fold(
                (String::new(), String::new()),
                |(mut operands, mut instructions), (operand, operand_instructions)| {
                    operands.push_str(&format!(" {operand}"));
                    instructions.push_str(&operand_instructions);
                    (operands, instructions)
                },
            );

        // Construct the destination register.
        let destination_register = format!("r{}", self.next_register);
        // Increment the register counter.
        self.next_register += 1;

        // Get the array type.
        let array_type = match self.type_table.get(&input.id) {
            Some(Type::Array(array_type)) => Type::Array(array_type),
            _ => unreachable!("All types should be known at this phase of compilation"),
        };
        let array_type: String = Self::visit_type(&array_type);

        let array_instruction =
            format!("    cast {expression_operands} into {destination_register} as {};\n", array_type);

        // Concatenate the instructions.
        instructions.push_str(&array_instruction);

        (destination_register, instructions)
    }

    fn visit_unary(&mut self, input: &'a UnaryExpression) -> (String, String) {
        let (expression_operand, expression_instructions) = self.visit_expression(&input.receiver);

        // Note that non-empty suffixes must be preceded by a space.
        let (opcode, suffix) = match input.op {
            UnaryOperation::Abs => ("abs", ""),
            UnaryOperation::AbsWrapped => ("abs.w", ""),
            UnaryOperation::Double => ("double", ""),
            UnaryOperation::Inverse => ("inv", ""),
            UnaryOperation::Not => ("not", ""),
            UnaryOperation::Negate => ("neg", ""),
            UnaryOperation::Square => ("square", ""),
            UnaryOperation::SquareRoot => ("sqrt", ""),
            UnaryOperation::ToXCoordinate => ("cast", " as group.x"),
            UnaryOperation::ToYCoordinate => ("cast", " as group.y"),
        };

        let destination_register = format!("r{}", self.next_register);
        let unary_instruction = format!("    {opcode} {expression_operand} into {destination_register}{suffix};\n");

        // Increment the register counter.
        self.next_register += 1;

        // Concatenate the instructions.
        let mut instructions = expression_instructions;
        instructions.push_str(&unary_instruction);

        (destination_register, instructions)
    }

    fn visit_ternary(&mut self, input: &'a TernaryExpression) -> (String, String) {
        let (condition_operand, condition_instructions) = self.visit_expression(&input.condition);
        let (if_true_operand, if_true_instructions) = self.visit_expression(&input.if_true);
        let (if_false_operand, if_false_instructions) = self.visit_expression(&input.if_false);

        let destination_register = format!("r{}", self.next_register);
        let ternary_instruction = format!(
            "    ternary {condition_operand} {if_true_operand} {if_false_operand} into {destination_register};\n",
        );

        // Increment the register counter.
        self.next_register += 1;

        // Concatenate the instructions.
        let mut instructions = condition_instructions;
        instructions.push_str(&if_true_instructions);
        instructions.push_str(&if_false_instructions);
        instructions.push_str(&ternary_instruction);

        (destination_register, instructions)
    }

    fn visit_struct_init(&mut self, input: &'a StructExpression) -> (String, String) {
        // Lookup struct or record.
        let name = if let Some((is_record, type_)) = self.composite_mapping.get(&input.name.name) {
            if *is_record {
                // record.private;
                format!("{}.{type_}", input.name)
            } else {
                // foo; // no visibility for structs
                input.name.to_string()
            }
        } else {
            unreachable!("All composite types should be known at this phase of compilation")
        };

        // Initialize instruction builder strings.
        let mut instructions = String::new();
        let mut struct_init_instruction = String::from("    cast ");

        // Visit each struct member and accumulate instructions from expressions.
        for member in input.members.iter() {
            let operand = if let Some(expr) = member.expression.as_ref() {
                // Visit variable expression.
                let (variable_operand, variable_instructions) = self.visit_expression(expr);
                instructions.push_str(&variable_instructions);

                variable_operand
            } else {
                // Push operand identifier.
                let (ident_operand, ident_instructions) = self.visit_identifier(&member.identifier);
                instructions.push_str(&ident_instructions);

                ident_operand
            };

            // Push operand name to struct init instruction.
            write!(struct_init_instruction, "{operand} ").expect("failed to write to string");
        }

        // Push destination register to struct init instruction.
        let destination_register = format!("r{}", self.next_register);
        writeln!(struct_init_instruction, "into {destination_register} as {name};",)
            .expect("failed to write to string");

        instructions.push_str(&struct_init_instruction);

        // Increment the register counter.
        self.next_register += 1;

        (destination_register, instructions)
    }

    fn visit_array_access(&mut self, input: &'a ArrayAccess) -> (String, String) {
        let (array_operand, _) = self.visit_expression(&input.array);
        let index_operand = match input.index.as_ref() {
            Expression::Literal(Literal::Integer(_, string, _, _)) => format!("{}u32", string),
            _ => unreachable!("Array indices must be integer literals"),
        };
        let array_access = format!("{}[{}]", array_operand, index_operand);

        (array_access, String::new())
    }

    fn visit_member_access(&mut self, input: &'a MemberAccess) -> (String, String) {
        let (inner_expr, _) = self.visit_expression(&input.inner);
        let member_access = format!("{}.{}", inner_expr, input.name);

        (member_access, String::new())
    }

    // group::GEN -> group::GEN
    fn visit_associated_constant(&mut self, input: &'a AssociatedConstant) -> (String, String) {
        (format!("{input}"), String::new())
    }

    // Pedersen64::hash() -> hash.ped64
    fn visit_associated_function(&mut self, input: &'a AssociatedFunction) -> (String, String) {
        let mut instructions = String::new();

        // Visit each function argument and accumulate instructions from expressions.
        let arguments = input
            .arguments
            .iter()
            .map(|argument| {
                let (arg_string, arg_instructions) = self.visit_expression(argument);
                instructions.push_str(&arg_instructions);
                arg_string
            })
            .collect::<Vec<_>>();

        // Helper function to get a destination register for a function call.
        let mut get_destination_register = || {
            let destination_register = format!("r{}", self.next_register);
            self.next_register += 1;
            destination_register
        };

        // Helper function to construct the instruction associated with a simple function call.
        // This assumes that the function call has one output.
        let mut construct_simple_function_call = |function: &Identifier, variant: &str, arguments: Vec<String>| {
            // Split function into [opcode, return type] e.g. hash_to_field -> [hash, field]
            let function_name = function.name.to_string();
            let mut names = function_name.split("_to_");
            let opcode = names.next().expect("failed to get opcode");
            let return_type = names.next().expect("failed to get type");

            let mut instruction = format!("    {opcode}.{variant}");
            for argument in arguments {
                write!(instruction, " {argument}").expect("failed to write to string");
            }
            let destination_register = get_destination_register();
            writeln!(instruction, " into {destination_register} as {return_type};").expect("failed to write to string");
            (destination_register, instruction)
        };

        // Construct the instruction.
        let (destination, instruction) = match input.variant.name {
            sym::BHP256 => construct_simple_function_call(&input.name, "bhp256", arguments),
            sym::BHP512 => construct_simple_function_call(&input.name, "bhp512", arguments),
            sym::BHP768 => construct_simple_function_call(&input.name, "bhp768", arguments),
            sym::BHP1024 => construct_simple_function_call(&input.name, "bhp1024", arguments),
            sym::Keccak256 => construct_simple_function_call(&input.name, "keccak256", arguments),
            sym::Keccak384 => construct_simple_function_call(&input.name, "keccak384", arguments),
            sym::Keccak512 => construct_simple_function_call(&input.name, "keccak512", arguments),
            sym::Pedersen64 => construct_simple_function_call(&input.name, "ped64", arguments),
            sym::Pedersen128 => construct_simple_function_call(&input.name, "ped128", arguments),
            sym::Poseidon2 => construct_simple_function_call(&input.name, "psd2", arguments),
            sym::Poseidon4 => construct_simple_function_call(&input.name, "psd4", arguments),
            sym::Poseidon8 => construct_simple_function_call(&input.name, "psd8", arguments),
            sym::SHA3_256 => construct_simple_function_call(&input.name, "sha3_256", arguments),
            sym::SHA3_384 => construct_simple_function_call(&input.name, "sha3_384", arguments),
            sym::SHA3_512 => construct_simple_function_call(&input.name, "sha3_512", arguments),
            sym::Mapping => match input.name.name {
                sym::get => {
                    let mut instruction = "    get".to_string();
                    let destination_register = get_destination_register();
                    // Write the mapping name and the key.
                    writeln!(instruction, " {}[{}] into {destination_register};", arguments[0], arguments[1])
                        .expect("failed to write to string");
                    (destination_register, instruction)
                }
                sym::get_or_use => {
                    let mut instruction = "    get.or_use".to_string();
                    let destination_register = get_destination_register();
                    // Write the mapping name, the key, and the default value.
                    writeln!(
                        instruction,
                        " {}[{}] {} into {destination_register};",
                        arguments[0], arguments[1], arguments[2]
                    )
                    .expect("failed to write to string");
                    (destination_register, instruction)
                }
                sym::set => {
                    let mut instruction = "    set".to_string();
                    // Write the value, mapping name, and the key.
                    writeln!(instruction, " {} into {}[{}];", arguments[2], arguments[0], arguments[1])
                        .expect("failed to write to string");
                    (String::new(), instruction)
                }
                sym::remove => {
                    let mut instruction = "    remove".to_string();
                    // Write the mapping name and the key.
                    writeln!(instruction, " {}[{}];", arguments[0], arguments[1]).expect("failed to write to string");
                    (String::new(), instruction)
                }
                sym::contains => {
                    let mut instruction = "    contains".to_string();
                    let destination_register = get_destination_register();
                    // Write the mapping name and the key.
                    writeln!(instruction, " {}[{}] into {destination_register};", arguments[0], arguments[1])
                        .expect("failed to write to string");
                    (destination_register, instruction)
                }
                _ => unreachable!("The only variants of Mapping are get, get_or, and set"),
            },
            sym::group => {
                match input.name {
                    Identifier { name: sym::to_x_coordinate, .. } => {
                        let mut instruction = "    cast".to_string();
                        let destination_register = get_destination_register();
                        // Write the argument and the destination register.
                        writeln!(instruction, " {} into {destination_register} as group.x;", arguments[0],)
                            .expect("failed to write to string");
                        (destination_register, instruction)
                    }
                    Identifier { name: sym::to_y_coordinate, .. } => {
                        let mut instruction = "    cast".to_string();
                        let destination_register = get_destination_register();
                        // Write the argument and the destination register.
                        writeln!(instruction, " {} into {destination_register} as group.y;", arguments[0],)
                            .expect("failed to write to string");
                        (destination_register, instruction)
                    }
                    _ => unreachable!("The only associated methods of group are to_x_coordinate and to_y_coordinate"),
                }
            }
            sym::ChaCha => {
                // Get the destination register.
                let destination_register = get_destination_register();
                // Construct the instruction template.
                let mut instruction = format!("    rand.chacha into {destination_register} as ");
                // Write the return type.
                match input.name {
                    Identifier { name: sym::rand_address, .. } => writeln!(instruction, "address;"),
                    Identifier { name: sym::rand_bool, .. } => writeln!(instruction, "boolean;"),
                    Identifier { name: sym::rand_field, .. } => writeln!(instruction, "field;"),
                    Identifier { name: sym::rand_group, .. } => writeln!(instruction, "group;"),
                    Identifier { name: sym::rand_i8, .. } => writeln!(instruction, "i8;"),
                    Identifier { name: sym::rand_i16, .. } => writeln!(instruction, "i16;"),
                    Identifier { name: sym::rand_i32, .. } => writeln!(instruction, "i32;"),
                    Identifier { name: sym::rand_i64, .. } => writeln!(instruction, "i64;"),
                    Identifier { name: sym::rand_i128, .. } => writeln!(instruction, "i128;"),
                    Identifier { name: sym::rand_scalar, .. } => writeln!(instruction, "scalar;"),
                    Identifier { name: sym::rand_u8, .. } => writeln!(instruction, "u8;"),
                    Identifier { name: sym::rand_u16, .. } => writeln!(instruction, "u16;"),
                    Identifier { name: sym::rand_u32, .. } => writeln!(instruction, "u32;"),
                    Identifier { name: sym::rand_u64, .. } => writeln!(instruction, "u64;"),
                    Identifier { name: sym::rand_u128, .. } => writeln!(instruction, "u128;"),
                    _ => unreachable!("The only associated methods of ChaCha are `rand_*`"),
                }
                .expect("failed to write to string");
                (destination_register, instruction)
            }
            sym::signature => {
                let mut instruction = "    sign.verify".to_string();
                let destination_register = get_destination_register();
                // Write the arguments and the destination register.
                writeln!(
                    instruction,
                    " {} {} {} into {destination_register};",
                    arguments[0], arguments[1], arguments[2]
                )
                .expect("failed to write to string");
                (destination_register, instruction)
            }
            sym::Future => {
                let mut instruction = "    await".to_string();
                writeln!(instruction, " {};", arguments[0]).expect("failed to write to string");
                (String::new(), instruction)
            }
            _ => {
                unreachable!("All core functions should be known at this phase of compilation")
            }
        };
        // Add the instruction to the list of instructions.
        instructions.push_str(&instruction);

        (destination, instructions)
    }

    fn visit_access(&mut self, input: &'a AccessExpression) -> (String, String) {
        match input {
            AccessExpression::Array(array) => self.visit_array_access(array),
            AccessExpression::Member(access) => self.visit_member_access(access),
            AccessExpression::AssociatedConstant(constant) => self.visit_associated_constant(constant),
            AccessExpression::AssociatedFunction(function) => self.visit_associated_function(function),
            AccessExpression::Tuple(_) => {
                unreachable!("Tuple access should not be in the AST at this phase of compilation.")
            }
        }
    }

    fn visit_call(&mut self, input: &'a CallExpression) -> (String, String) {
        // Lookup the function return type.
        let function_name = match input.function.borrow() {
            Expression::Identifier(identifier) => identifier.name,
            _ => unreachable!("Parsing guarantees that a function name is always an identifier."),
        };

        // Check if function is external.
        let main_program = input.program.unwrap();
        // Need to determine the program the function originated from as well as if the function has a finalize block.
        let mut call_instruction = if main_program != self.program_id.unwrap().name.name {
            // All external functions must be defined as stubs.
            if self.program.stubs.get(&main_program).is_some() {
                format!("    call {}.aleo/{}", main_program, input.function)
            } else {
                unreachable!("Type checking guarantees that imported and stub programs are well defined.")
            }
        } else {
            // Lookup in symbol table to determine if its an async function.
            if let Some(func) = self.symbol_table.lookup_fn_symbol(Location::new(input.program, function_name)) {
                if func.variant.is_async() && input.program.unwrap() == self.program_id.unwrap().name.name {
                    format!("    async {}", self.current_function.unwrap().identifier)
                } else {
                    format!("    call {}", input.function)
                }
            } else {
                unreachable!("Type checking guarantees that all functions are well defined.")
            }
        };
        let mut instructions = String::new();

        for argument in input.arguments.iter() {
            let (argument, argument_instructions) = self.visit_expression(argument);
            write!(call_instruction, " {argument}").expect("failed to write to string");
            instructions.push_str(&argument_instructions);
        }

        // Initialize storage for the destination registers.
        let mut destinations = Vec::new();

        // Create operands for the output registers.
        let func = &self.symbol_table.lookup_fn_symbol(Location::new(Some(main_program), function_name)).unwrap();
        match func.output_type.clone() {
            Type::Unit => {} // Do nothing
            Type::Tuple(tuple) => match tuple.length() {
                0 | 1 => unreachable!("Parsing guarantees that a tuple type has at least two elements"),
                len => {
                    for _ in 0..len {
                        let destination_register = format!("r{}", self.next_register);
                        destinations.push(destination_register);
                        self.next_register += 1;
                    }
                }
            },
            _ => {
                let destination_register = format!("r{}", self.next_register);
                destinations.push(destination_register);
                self.next_register += 1;
            }
        }

        // Add a register for async functions to represent the future created.
        if func.variant == Variant::AsyncFunction {
            let destination_register = format!("r{}", self.next_register);
            destinations.push(destination_register);
            self.next_register += 1;
        }

        // Construct the output operands. These are the destination registers **without** the future.
        let output_operands = destinations.join(" ");

        // If destination registers were created, write them to the call instruction.
        if !destinations.is_empty() {
            write!(call_instruction, " into").expect("failed to write to string");
            for destination in &destinations {
                write!(call_instruction, " {}", destination).expect("failed to write to string");
            }
        }

        // Write the closing semicolon.
        writeln!(call_instruction, ";").expect("failed to write to string");

        // Push the call instruction to the list of instructions.
        instructions.push_str(&call_instruction);

        // Return the output operands and the instructions.
        (output_operands, instructions)
    }

    fn visit_tuple(&mut self, input: &'a TupleExpression) -> (String, String) {
        // Need to return a single string here so we will join the tuple elements with ' '
        // and split them after this method is called.
        let mut tuple_elements = Vec::with_capacity(input.elements.len());
        let mut instructions = String::new();

        // Visit each tuple element and accumulate instructions from expressions.
        for element in input.elements.iter() {
            let (element, element_instructions) = self.visit_expression(element);
            tuple_elements.push(element);
            instructions.push_str(&element_instructions);
        }

        // CAUTION: does not return the destination_register.
        (tuple_elements.join(" "), instructions)
    }

    fn visit_unit(&mut self, _input: &'a UnitExpression) -> (String, String) {
        unreachable!("`UnitExpression`s should not be visited during code generation.")
    }
}