leo_passes/common/symbol_table/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
// Copyright (C) 2019-2025 Provable Inc.
// This file is part of the Leo library.

// The Leo library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// The Leo library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.

use leo_ast::{Composite, Expression, Function, Location, NodeID, Type};
use leo_errors::{AstError, Result};
use leo_span::{Span, Symbol};

use indexmap::IndexMap;
use std::{cell::RefCell, collections::HashMap, rc::Rc};

mod symbols;
pub use symbols::*;

/// Maps global and local symbols to information about them.
///
/// Scopes are indexed by the NodeID of the function, block, or iteration.
#[derive(Debug, Default)]
pub struct SymbolTable {
    /// Functions indexed by location.
    functions: IndexMap<Location, FunctionSymbol>,

    /// Records indexed by location.
    records: IndexMap<Location, Composite>,

    /// Structs indexed by location.
    structs: IndexMap<Symbol, Composite>,

    /// Consts that have been successfully evaluated.
    global_consts: IndexMap<Location, Expression>,

    /// Global variables indexed by location.
    globals: IndexMap<Location, VariableSymbol>,

    /// Local tables index by the NodeID of the function, iteration, or block they're contained in.
    all_locals: HashMap<NodeID, LocalTable>,

    /// The current LocalTable we're looking at.
    local: Option<LocalTable>,
}

#[derive(Clone, Default, Debug)]
struct LocalTable {
    inner: Rc<RefCell<LocalTableInner>>,
}

#[derive(Clone, Default, Debug)]
struct LocalTableInner {
    /// The `NodeID` of the function, iteration, or block this table indexes.
    id: NodeID,

    /// The parent `NodeID` of this scope, if it exists.
    parent: Option<NodeID>,

    /// The consts we've evaluated in this scope.
    consts: HashMap<Symbol, Expression>,

    /// Variables in this scope, indexed by name.
    variables: HashMap<Symbol, VariableSymbol>,
}

impl LocalTable {
    fn new(id: NodeID, parent: Option<NodeID>) -> Self {
        LocalTable {
            inner: Rc::new(RefCell::new(LocalTableInner {
                id,
                parent,
                consts: HashMap::new(),
                variables: HashMap::new(),
            })),
        }
    }

    fn dup(&self, new_id: NodeID) -> Self {
        let mut inner = self.inner.borrow().clone();
        inner.id = new_id;
        LocalTable { inner: Rc::new(RefCell::new(inner)) }
    }
}

impl SymbolTable {
    /// Iterator over all the structs (not records) in this program.
    pub fn iter_structs(&self) -> impl Iterator<Item = (Symbol, &Composite)> {
        self.structs.iter().map(|(name, comp)| (*name, comp))
    }

    /// Iterator over all the records in this program.
    pub fn iter_records(&self) -> impl Iterator<Item = (Location, &Composite)> {
        self.records.iter().map(|(loc, comp)| (*loc, comp))
    }

    /// Iterator over all the functions in this program.
    pub fn iter_functions(&self) -> impl Iterator<Item = (Location, &FunctionSymbol)> {
        self.functions.iter().map(|(loc, func_symbol)| (*loc, func_symbol))
    }

    /// Access the struct by this name if it exists.
    pub fn lookup_struct(&self, name: Symbol) -> Option<&Composite> {
        self.structs.get(&name)
    }

    /// Access the record at this location if it exists.
    pub fn lookup_record(&self, location: Location) -> Option<&Composite> {
        self.records.get(&location)
    }

    /// Access the function at this location if it exists.
    pub fn lookup_function(&self, location: Location) -> Option<&FunctionSymbol> {
        self.functions.get(&location)
    }

    /// Access the variable accessible by this name in the current scope.
    pub fn lookup_variable(&self, program: Symbol, name: Symbol) -> Option<VariableSymbol> {
        let mut current = self.local.as_ref();

        while let Some(table) = current {
            let borrowed = table.inner.borrow();
            let value = borrowed.variables.get(&name);
            if value.is_some() {
                return value.cloned();
            }

            current = borrowed.parent.and_then(|id| self.all_locals.get(&id));
        }

        self.globals.get(&Location::new(program, name)).cloned()
    }

    /// Enter the scope of this `NodeID`, creating a table if it doesn't exist yet.
    ///
    /// Passing `None` means to enter the global scope.
    pub fn enter_scope(&mut self, id: Option<NodeID>) {
        self.local = id.map(|id| {
            let parent = self.local.as_ref().map(|table| table.inner.borrow().id);
            let new_local_table = self.all_locals.entry(id).or_insert_with(|| LocalTable::new(id, parent));
            assert_eq!(parent, new_local_table.inner.borrow().parent, "Entered scopes out of order.");
            new_local_table.clone()
        });
    }

    /// Enter the new scope with id `new_id`, duplicating its local symbol table from the scope at `old_id`.
    ///
    /// This is useful for a pass like loop unrolling, in which the loop body must be duplicated multiple times.
    pub fn enter_scope_duped(&mut self, new_id: NodeID, old_id: NodeID) {
        let old_local_table = self.all_locals.get(&old_id).expect("Must have an old scope to dup from.");
        let new_local_table = old_local_table.dup(new_id);
        let parent = self.local.as_ref().map(|table| table.inner.borrow().id);
        new_local_table.inner.borrow_mut().parent = parent;
        self.all_locals.insert(new_id, new_local_table.clone());
        self.local = Some(new_local_table);
    }

    /// Enther the parent scope of the current scope (or the global scope if there is no local parent scope).
    pub fn enter_parent(&mut self) {
        let parent: Option<NodeID> = self.local.as_ref().and_then(|table| table.inner.borrow().parent);
        self.local = parent.map(|id| self.all_locals.get(&id).expect("Parent should exist.")).cloned();
    }

    /// Insert an evaluated const into the current scope.
    pub fn insert_const(&mut self, program: Symbol, name: Symbol, value: Expression) {
        if let Some(table) = self.local.as_mut() {
            table.inner.borrow_mut().consts.insert(name, value);
        } else {
            self.global_consts.insert(Location::new(program, name), value);
        }
    }

    /// Find the evaluated const accessible by the given name in the current scope.
    pub fn lookup_const(&self, program: Symbol, name: Symbol) -> Option<Expression> {
        let mut current = self.local.as_ref();

        while let Some(table) = current {
            let borrowed = table.inner.borrow();
            let value = borrowed.consts.get(&name);
            if value.is_some() {
                return value.cloned();
            }

            current = borrowed.parent.and_then(|id| self.all_locals.get(&id));
        }

        self.global_consts.get(&Location::new(program, name)).cloned()
    }

    /// Insert a struct at this name.
    ///
    /// Since structs are indexed only by name, the program is used only to check shadowing.
    pub fn insert_struct(&mut self, program: Symbol, name: Symbol, composite: Composite) -> Result<()> {
        if let Some(old_composite) = self.structs.get(&name) {
            if eq_struct(&composite, old_composite) {
                Ok(())
            } else {
                Err(AstError::redefining_external_struct(name, composite.span).into())
            }
        } else {
            let location = Location::new(program, name);
            self.check_shadow_global(location, composite.span)?;
            self.structs.insert(name, composite);
            Ok(())
        }
    }

    /// Insert a record at this location.
    pub fn insert_record(&mut self, location: Location, composite: Composite) -> Result<()> {
        self.check_shadow_global(location, composite.span)?;
        self.records.insert(location, composite);
        Ok(())
    }

    /// Insert a function at this location.
    pub fn insert_function(&mut self, location: Location, function: Function) -> Result<()> {
        self.check_shadow_global(location, function.span)?;
        self.functions.insert(location, FunctionSymbol { function, finalizer: None });
        Ok(())
    }

    /// Insert a global at this location.
    pub fn insert_global(&mut self, location: Location, var: VariableSymbol) -> Result<()> {
        self.check_shadow_global(location, var.span)?;
        self.globals.insert(location, var);
        Ok(())
    }

    /// Access the global at this location if it exists.
    pub fn lookup_global(&self, location: Location) -> Option<&VariableSymbol> {
        self.globals.get(&location)
    }

    fn check_shadow_global(&self, location: Location, span: Span) -> Result<()> {
        if self.functions.contains_key(&location) {
            Err(AstError::shadowed_function(location.name, span).into())
        } else if self.records.contains_key(&location) {
            Err(AstError::shadowed_record(location.name, span).into())
        } else if self.structs.contains_key(&location.name) {
            Err(AstError::shadowed_struct(location.name, span).into())
        } else if self.globals.contains_key(&location) {
            Err(AstError::shadowed_variable(location.name, span).into())
        } else {
            Ok(())
        }
    }

    fn check_shadow_variable(&self, program: Symbol, name: Symbol, span: Span) -> Result<()> {
        let mut current = self.local.as_ref();

        while let Some(table) = current {
            if table.inner.borrow().variables.contains_key(&name) {
                return Err(AstError::shadowed_variable(name, span).into());
            }
            current = table.inner.borrow().parent.map(|id| self.all_locals.get(&id).expect("Parent should exist."));
        }

        self.check_shadow_global(Location::new(program, name), span)?;

        Ok(())
    }

    /// Insert a variable into the current scope.
    pub fn insert_variable(&mut self, program: Symbol, name: Symbol, var: VariableSymbol) -> Result<()> {
        self.check_shadow_variable(program, name, var.span)?;

        if let Some(table) = self.local.as_mut() {
            table.inner.borrow_mut().variables.insert(name, var);
        } else {
            self.globals.insert(Location::new(program, name), var);
        }

        Ok(())
    }

    /// Attach a finalizer to a function.
    pub fn attach_finalizer(
        &mut self,
        caller: Location,
        callee: Location,
        future_inputs: Vec<Location>,
        inferred_inputs: Vec<Type>,
    ) -> Result<()> {
        let callee_location = Location::new(callee.program, callee.name);

        if let Some(func) = self.functions.get_mut(&caller) {
            func.finalizer = Some(Finalizer { location: callee_location, future_inputs, inferred_inputs });
            Ok(())
        } else {
            Err(AstError::function_not_found(caller.name).into())
        }
    }
}

fn eq_struct(new: &Composite, old: &Composite) -> bool {
    if new.members.len() != old.members.len() {
        return false;
    }

    new.members
        .iter()
        .zip(old.members.iter())
        .all(|(member1, member2)| member1.name() == member2.name() && member1.type_.eq_flat_relaxed(&member2.type_))
}