leo_passes/destructuring/destructure_statement.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
// Copyright (C) 2019-2025 Provable Inc.
// This file is part of the Leo library.
// The Leo library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// The Leo library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::Destructurer;
use leo_ast::{
AssignStatement,
Block,
ConditionalStatement,
ConsoleStatement,
DefinitionStatement,
Expression,
ExpressionReconstructor,
Identifier,
IterationStatement,
Node,
ReturnStatement,
Statement,
StatementReconstructor,
TupleExpression,
Type,
};
use itertools::Itertools;
impl StatementReconstructor for Destructurer<'_> {
/// Flattens an assign statement, if necessary.
/// Marks variables as structs as necessary.
/// Note that new statements are only produced if the right hand side is a ternary expression over structs.
/// Otherwise, the statement is returned as is.
fn reconstruct_assign(&mut self, assign: AssignStatement) -> (Statement, Self::AdditionalOutput) {
// Flatten the rhs of the assignment.
let value = self.reconstruct_expression(assign.value).0;
match (assign.place, value.clone()) {
// If the lhs is an identifier and the rhs is a tuple, then add the tuple to `self.tuples`.
// Return a dummy statement in its place.
(Expression::Identifier(identifier), Expression::Tuple(tuple)) => {
self.tuples.insert(identifier.name, tuple);
// Note that tuple assignments are removed from the AST.
(Statement::dummy(Default::default(), self.node_builder.next_id()), Default::default())
}
// If the lhs is an identifier and the rhs is an identifier that is a tuple, then add it to `self.tuples`.
// Return a dummy statement in its place.
(Expression::Identifier(lhs_identifier), Expression::Identifier(rhs_identifier))
if self.tuples.contains_key(&rhs_identifier.name) =>
{
// Lookup the entry in `self.tuples` and add it for the lhs of the assignment.
// Note that the `unwrap` is safe since the match arm checks that the entry exists.
self.tuples.insert(lhs_identifier.name, self.tuples.get(&rhs_identifier.name).unwrap().clone());
// Note that tuple assignments are removed from the AST.
(Statement::dummy(Default::default(), self.node_builder.next_id()), Default::default())
}
// If the lhs is an identifier and the rhs is a function call that produces a tuple, then add it to `self.tuples`.
(Expression::Identifier(lhs_identifier), Expression::Call(call)) => {
// Retrieve the entry in the type table for the function call.
let value_type = match self.type_table.get(&call.id()) {
Some(type_) => type_,
None => unreachable!("Type checking guarantees that the type of the rhs is in the type table."),
};
match &value_type {
// If the function returns a tuple, reconstruct the assignment and add an entry to `self.tuples`.
Type::Tuple(tuple) => {
// Create a new tuple expression with unique identifiers for each index of the lhs.
let tuple_expression = TupleExpression {
elements: (0..tuple.length())
.zip_eq(tuple.elements().iter())
.map(|(i, type_)| {
// Return the identifier as an expression.
Expression::Identifier(Identifier::new(
self.assigner.unique_symbol(lhs_identifier.name, format!("$index${i}$")),
{
// Construct a node ID for the identifier.
let id = self.node_builder.next_id();
// Update the type table with the type.
self.type_table.insert(id, type_.clone());
id
},
))
})
.collect(),
span: Default::default(),
id: {
// Construct a node ID for the tuple expression.
let id = self.node_builder.next_id();
// Update the type table with the type.
self.type_table.insert(id, Type::Tuple(tuple.clone()));
id
},
};
// Add the `tuple_expression` to `self.tuples`.
self.tuples.insert(lhs_identifier.name, tuple_expression.clone());
// Update the type table with the type of the tuple expression.
self.type_table.insert(tuple_expression.id, Type::Tuple(tuple.clone()));
// Construct a new assignment statement with a tuple expression on the lhs.
(
Statement::Assign(Box::new(AssignStatement {
place: Expression::Tuple(tuple_expression),
value: Expression::Call(call),
span: Default::default(),
id: self.node_builder.next_id(),
})),
Default::default(),
)
}
// Otherwise, reconstruct the assignment as is.
_ => (self.simple_assign_statement(lhs_identifier, Expression::Call(call)), Default::default()),
}
}
(Expression::Identifier(identifier), expression) => {
(self.simple_assign_statement(identifier, expression), Default::default())
}
// If the lhs is a tuple and the rhs is a function call, then return the reconstructed statement.
(Expression::Tuple(tuple), Expression::Call(call)) => (
Statement::Assign(Box::new(AssignStatement {
place: Expression::Tuple(tuple),
value: Expression::Call(call),
span: Default::default(),
id: self.node_builder.next_id(),
})),
Default::default(),
),
// If the lhs is a tuple and the rhs is a tuple, create a new assign statement for each tuple element.
(Expression::Tuple(lhs_tuple), Expression::Tuple(rhs_tuple)) => {
let statements = lhs_tuple
.elements
.into_iter()
.zip_eq(rhs_tuple.elements)
.map(|(lhs, rhs)| {
// Get the type of the rhs.
let type_ = match self.type_table.get(&lhs.id()) {
Some(type_) => type_.clone(),
None => {
unreachable!("Type checking guarantees that the type of the lhs is in the type table.")
}
};
// Set the type of the lhs.
self.type_table.insert(rhs.id(), type_);
// Return the assign statement.
Statement::Assign(Box::new(AssignStatement {
place: lhs,
value: rhs,
span: Default::default(),
id: self.node_builder.next_id(),
}))
})
.collect();
(Statement::dummy(Default::default(), self.node_builder.next_id()), statements)
}
// If the lhs is a tuple and the rhs is an identifier that is a tuple, create a new assign statement for each tuple element.
(Expression::Tuple(lhs_tuple), Expression::Identifier(identifier))
if self.tuples.contains_key(&identifier.name) =>
{
// Lookup the entry in `self.tuples`.
// Note that the `unwrap` is safe since the match arm checks that the entry exists.
let rhs_tuple = self.tuples.get(&identifier.name).unwrap().clone();
// Create a new assign statement for each tuple element.
let statements = lhs_tuple
.elements
.into_iter()
.zip_eq(rhs_tuple.elements)
.map(|(lhs, rhs)| {
// Get the type of the rhs.
let type_ = match self.type_table.get(&lhs.id()) {
Some(type_) => type_.clone(),
None => {
unreachable!("Type checking guarantees that the type of the lhs is in the type table.")
}
};
// Set the type of the lhs.
self.type_table.insert(rhs.id(), type_);
// Return the assign statement.
Statement::Assign(Box::new(AssignStatement {
place: lhs,
value: rhs,
span: Default::default(),
id: self.node_builder.next_id(),
}))
})
.collect();
(Statement::dummy(Default::default(), self.node_builder.next_id()), statements)
}
// If the lhs of an assignment is a tuple, then the rhs can be one of the following:
// - A function call that produces a tuple. (handled above)
// - A tuple. (handled above)
// - An identifier that is a tuple. (handled above)
// - A ternary expression that produces a tuple. (handled when the rhs is flattened above)
(Expression::Tuple(_), _) => {
unreachable!("`Type checking guarantees that the rhs of an assignment to a tuple is a tuple.`")
}
_ => unreachable!("`AssignStatement`s can only have `Identifier`s or `Tuple`s on the left hand side."),
}
}
fn reconstruct_block(&mut self, block: Block) -> (Block, Self::AdditionalOutput) {
let mut statements = Vec::with_capacity(block.statements.len());
// Reconstruct the statements in the block, accumulating any additional statements.
for statement in block.statements {
let (reconstructed_statement, additional_statements) = self.reconstruct_statement(statement);
statements.extend(additional_statements);
statements.push(reconstructed_statement);
}
(Block { span: block.span, statements, id: self.node_builder.next_id() }, Default::default())
}
fn reconstruct_conditional(&mut self, input: ConditionalStatement) -> (Statement, Self::AdditionalOutput) {
// Conditional statements can only exist in finalize blocks.
if !self.is_async {
unreachable!("`ConditionalStatement`s should not be in the AST at this phase of compilation.")
} else {
(
Statement::Conditional(ConditionalStatement {
condition: self.reconstruct_expression(input.condition).0,
then: self.reconstruct_block(input.then).0,
otherwise: input.otherwise.map(|n| Box::new(self.reconstruct_statement(*n).0)),
span: input.span,
id: input.id,
}),
Default::default(),
)
}
}
fn reconstruct_console(&mut self, _: ConsoleStatement) -> (Statement, Self::AdditionalOutput) {
unreachable!("`ConsoleStatement`s should not be in the AST at this phase of compilation.")
}
fn reconstruct_definition(&mut self, _: DefinitionStatement) -> (Statement, Self::AdditionalOutput) {
unreachable!("`DefinitionStatement`s should not exist in the AST at this phase of compilation.")
}
fn reconstruct_iteration(&mut self, _: IterationStatement) -> (Statement, Self::AdditionalOutput) {
unreachable!("`IterationStatement`s should not be in the AST at this phase of compilation.");
}
/// Reconstructs
fn reconstruct_return(&mut self, input: ReturnStatement) -> (Statement, Self::AdditionalOutput) {
// Note that SSA guarantees that `input.expression` is either a literal, identifier, or unit expression.
let expression = match input.expression {
// If the input is an identifier that maps to a tuple, use the tuple expression.
Expression::Identifier(identifier) if self.tuples.contains_key(&identifier.name) => {
// Note that the `unwrap` is safe since the match arm checks that the entry exists in `self.tuples`.
let tuple = self.tuples.get(&identifier.name).unwrap().clone();
Expression::Tuple(tuple)
}
// Otherwise, use the original expression.
_ => input.expression,
};
(Statement::Return(ReturnStatement { expression, span: input.span, id: input.id }), Default::default())
}
}