leo_passes/flattening/flatten_statement.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
// Copyright (C) 2019-2025 Provable Inc.
// This file is part of the Leo library.
// The Leo library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// The Leo library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::{Flattener, Guard, ReturnGuard};
use leo_ast::{
AssertStatement,
AssertVariant,
AssignStatement,
BinaryExpression,
BinaryOperation,
Block,
ConditionalStatement,
ConsoleStatement,
DefinitionStatement,
Expression,
ExpressionReconstructor,
Identifier,
IterationStatement,
Node,
ReturnStatement,
Statement,
StatementReconstructor,
Type,
UnaryExpression,
UnaryOperation,
};
use itertools::Itertools;
impl StatementReconstructor for Flattener<'_> {
/// Rewrites an assert statement into a flattened form.
/// Assert statements at the top level only have their arguments flattened.
/// Assert statements inside a conditional statement are flattened to such that the check is conditional on
/// the execution path being valid.
/// For example, the following snippet:
/// ```leo
/// if condition1 {
/// if condition2 {
/// assert(foo);
/// }
/// }
/// ```
/// is flattened to:
/// ```leo
/// assert(!(condition1 && condition2) || foo);
/// ```
/// which is equivalent to the logical formula `(condition1 /\ condition2) ==> foo`.
fn reconstruct_assert(&mut self, input: AssertStatement) -> (Statement, Self::AdditionalOutput) {
let mut statements = Vec::new();
// If we are traversing an async function, then we can return the assert as it.
if self.is_async {
return (Statement::Assert(input), statements);
}
// Flatten the arguments of the assert statement.
let assert = AssertStatement {
span: input.span,
id: input.id,
variant: match input.variant {
AssertVariant::Assert(expression) => {
let (expression, additional_statements) = self.reconstruct_expression(expression);
statements.extend(additional_statements);
AssertVariant::Assert(expression)
}
AssertVariant::AssertEq(left, right) => {
let (left, additional_statements) = self.reconstruct_expression(left);
statements.extend(additional_statements);
let (right, additional_statements) = self.reconstruct_expression(right);
statements.extend(additional_statements);
AssertVariant::AssertEq(left, right)
}
AssertVariant::AssertNeq(left, right) => {
let (left, additional_statements) = self.reconstruct_expression(left);
statements.extend(additional_statements);
let (right, additional_statements) = self.reconstruct_expression(right);
statements.extend(additional_statements);
AssertVariant::AssertNeq(left, right)
}
},
};
let mut guards: Vec<Expression> = Vec::new();
if let Some((guard, guard_statements)) = self.construct_guard() {
statements.extend(guard_statements);
// The not_guard is true if we didn't follow the condition chain
// that led to this assertion.
let not_guard = Expression::Unary(UnaryExpression {
op: UnaryOperation::Not,
receiver: Box::new(Expression::Identifier(guard)),
span: Default::default(),
id: {
// Create a new node ID for the unary expression.
let id = self.node_builder.next_id();
// Update the type table with the type of the unary expression.
self.type_table.insert(id, Type::Boolean);
id
},
});
let (identifier, statement) = self.unique_simple_assign_statement(not_guard);
statements.push(statement);
guards.push(Expression::Identifier(identifier));
}
// We also need to guard against early returns.
if let Some((guard, guard_statements)) = self.construct_early_return_guard() {
guards.push(Expression::Identifier(guard));
statements.extend(guard_statements);
}
if guards.is_empty() {
return (Statement::Assert(assert), statements);
}
let is_eq = matches!(assert.variant, AssertVariant::AssertEq(..));
// We need to `or` the asserted expression with the guards,
// so extract an appropriate expression.
let mut expression = match assert.variant {
// If the assert statement is an `assert`, use the expression as is.
AssertVariant::Assert(expression) => expression,
// For `assert_eq` or `assert_neq`, construct a new expression.
AssertVariant::AssertEq(left, right) | AssertVariant::AssertNeq(left, right) => {
let binary = Expression::Binary(BinaryExpression {
left: Box::new(left),
op: if is_eq { BinaryOperation::Eq } else { BinaryOperation::Neq },
right: Box::new(right),
span: Default::default(),
id: {
// Create a new node ID.
let id = self.node_builder.next_id();
// Update the type table.
self.type_table.insert(id, Type::Boolean);
id
},
});
let (identifier, statement) = self.unique_simple_assign_statement(binary);
statements.push(statement);
Expression::Identifier(identifier)
}
};
// The assertion will be that the original assert statement is true or one of the guards is true
// (ie, we either didn't follow the condition chain that led to this assert, or else we took an
// early return).
for guard in guards.into_iter() {
let binary = Expression::Binary(BinaryExpression {
op: BinaryOperation::Or,
span: Default::default(),
id: {
// Create a new node ID.
let id = self.node_builder.next_id();
// Update the type table.
self.type_table.insert(id, Type::Boolean);
id
},
left: Box::new(expression),
right: Box::new(guard),
});
let (identifier, statement) = self.unique_simple_assign_statement(binary);
statements.push(statement);
expression = Expression::Identifier(identifier);
}
let assert_statement = Statement::Assert(AssertStatement {
span: input.span,
id: input.id,
variant: AssertVariant::Assert(expression),
});
(assert_statement, statements)
}
/// Flattens an assign statement, if necessary.
/// Marks variables as structs as necessary.
/// Note that new statements are only produced if the right hand side is a ternary expression over structs.
/// Otherwise, the statement is returned as is.
fn reconstruct_assign(&mut self, assign: AssignStatement) -> (Statement, Self::AdditionalOutput) {
// Flatten the rhs of the assignment.
let (value, statements) = self.reconstruct_expression(assign.value);
match (assign.place, &value) {
(Expression::Identifier(identifier), _) => (self.simple_assign_statement(identifier, value), statements),
(Expression::Tuple(tuple), expression) => {
let output_type = match &self.type_table.get(&expression.id()) {
Some(Type::Tuple(tuple_type)) => tuple_type.clone(),
_ => unreachable!("Type checking guarantees that the output type is a tuple."),
};
tuple.elements.iter().zip_eq(output_type.elements().iter()).for_each(|(identifier, type_)| {
let identifier = match identifier {
Expression::Identifier(identifier) => identifier,
_ => unreachable!("Type checking guarantees that a tuple element on the lhs is an identifier."),
};
// Add the type of each identifier to the type table.
self.type_table.insert(identifier.id, type_.clone());
});
// Set the type of the tuple expression.
self.type_table.insert(tuple.id, Type::Tuple(output_type.clone()));
(
Statement::Assign(Box::new(AssignStatement {
place: Expression::Tuple(tuple),
value,
span: Default::default(),
id: self.node_builder.next_id(),
})),
statements,
)
}
_ => unreachable!("`AssignStatement`s can only have `Identifier`s or `Tuple`s on the left hand side."),
}
}
// TODO: Do we want to flatten nested blocks? They do not affect code generation but it would regularize the AST structure.
/// Flattens the statements inside a basic block.
/// The resulting block does not contain any conditional statements.
fn reconstruct_block(&mut self, block: Block) -> (Block, Self::AdditionalOutput) {
let mut statements = Vec::with_capacity(block.statements.len());
// Flatten each statement, accumulating any new statements produced.
for statement in block.statements {
let (reconstructed_statement, additional_statements) = self.reconstruct_statement(statement);
statements.extend(additional_statements);
statements.push(reconstructed_statement);
}
(Block { span: block.span, statements, id: self.node_builder.next_id() }, Default::default())
}
/// Flatten a conditional statement into a list of statements.
fn reconstruct_conditional(&mut self, conditional: ConditionalStatement) -> (Statement, Self::AdditionalOutput) {
let mut statements = Vec::with_capacity(conditional.then.statements.len());
// If we are traversing an async function, reconstruct the if and else blocks, but do not flatten them.
if self.is_async {
let then_block = self.reconstruct_block(conditional.then).0;
let otherwise_block = match conditional.otherwise {
Some(statement) => match *statement {
Statement::Block(block) => self.reconstruct_block(block).0,
_ => unreachable!("SSA guarantees that the `otherwise` is always a `Block`"),
},
None => Block { span: Default::default(), statements: Vec::new(), id: self.node_builder.next_id() },
};
return (
Statement::Conditional(ConditionalStatement {
condition: conditional.condition,
then: then_block,
otherwise: Some(Box::new(Statement::Block(otherwise_block))),
span: conditional.span,
id: conditional.id,
}),
statements,
);
}
// Assign the condition to a variable, as it may be used multiple times.
let place = Identifier {
name: self.assigner.unique_symbol("condition", "$"),
span: Default::default(),
id: {
let id = self.node_builder.next_id();
self.type_table.insert(id, Type::Boolean);
id
},
};
statements.push(self.simple_assign_statement(place, conditional.condition.clone()));
// Add condition to the condition stack.
self.condition_stack.push(Guard::Unconstructed(place));
// Reconstruct the then-block and accumulate it constituent statements.
statements.extend(self.reconstruct_block(conditional.then).0.statements);
// Remove condition from the condition stack.
self.condition_stack.pop();
// Consume the otherwise-block and flatten its constituent statements into the current block.
if let Some(statement) = conditional.otherwise {
// Apply Not to the condition, assign it, and put it on the condition stack.
let not_condition = Expression::Unary(UnaryExpression {
op: UnaryOperation::Not,
receiver: Box::new(conditional.condition.clone()),
span: conditional.condition.span(),
id: conditional.condition.id(),
});
let not_place = Identifier {
name: self.assigner.unique_symbol("condition", "$"),
span: Default::default(),
id: {
let id = self.node_builder.next_id();
self.type_table.insert(id, Type::Boolean);
id
},
};
statements.push(self.simple_assign_statement(not_place, not_condition));
self.condition_stack.push(Guard::Unconstructed(not_place));
// Reconstruct the otherwise-block and accumulate it constituent statements.
match *statement {
Statement::Block(block) => statements.extend(self.reconstruct_block(block).0.statements),
_ => unreachable!("SSA guarantees that the `otherwise` is always a `Block`"),
}
// Remove the negated condition from the condition stack.
self.condition_stack.pop();
};
(Statement::dummy(Default::default(), self.node_builder.next_id()), statements)
}
fn reconstruct_console(&mut self, _: ConsoleStatement) -> (Statement, Self::AdditionalOutput) {
unreachable!("`ConsoleStatement`s should not be in the AST at this phase of compilation.")
}
fn reconstruct_definition(&mut self, _definition: DefinitionStatement) -> (Statement, Self::AdditionalOutput) {
unreachable!("`DefinitionStatement`s should not exist in the AST at this phase of compilation.")
}
fn reconstruct_iteration(&mut self, _input: IterationStatement) -> (Statement, Self::AdditionalOutput) {
unreachable!("`IterationStatement`s should not be in the AST at this phase of compilation.");
}
/// Transforms a return statement into an empty block statement.
/// Stores the arguments to the return statement, which are later folded into a single return statement at the end of the function.
fn reconstruct_return(&mut self, input: ReturnStatement) -> (Statement, Self::AdditionalOutput) {
// If we are traversing an async function, return as is.
if self.is_async {
return (Statement::Return(input), Default::default());
}
// Construct the associated guard.
let (guard_identifier, statements) = self.construct_guard().unzip();
let return_guard = guard_identifier.map_or(ReturnGuard::None, ReturnGuard::Unconstructed);
match input.expression {
Expression::Unit(_) | Expression::Identifier(_) | Expression::Access(_) => {
self.returns.push((return_guard, input))
}
_ => unreachable!("SSA guarantees that the expression is always an identifier or unit expression."),
};
(Statement::dummy(Default::default(), self.node_builder.next_id()), statements.unwrap_or_default())
}
}