leo_passes/flattening/
flattener.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
// Copyright (C) 2019-2025 Provable Inc.
// This file is part of the Leo library.

// The Leo library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// The Leo library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.

use crate::{Assigner, SymbolTable, TypeTable};

use leo_ast::{
    AccessExpression,
    ArrayAccess,
    ArrayExpression,
    ArrayType,
    BinaryExpression,
    BinaryOperation,
    Block,
    Composite,
    CompositeType,
    Expression,
    ExpressionReconstructor,
    Identifier,
    IntegerType,
    Literal,
    Member,
    MemberAccess,
    Node,
    NodeBuilder,
    NonNegativeNumber,
    ReturnStatement,
    Statement,
    StructExpression,
    StructVariableInitializer,
    TernaryExpression,
    TupleAccess,
    TupleExpression,
    TupleType,
    Type,
    UnitExpression,
};
use leo_span::Symbol;

/// An expression representing a conditional to reach the current
/// point in the AST.
#[derive(Clone, Copy)]
pub enum Guard {
    /// An Unconstructed guard is one representing a single conditional
    /// on the stack of conditions.
    Unconstructed(Identifier),

    /// A Constructed guard is one which as been `And`ed with all previous
    /// conditions on the stack.
    ///
    /// We cache this so that we don't have to evaluate the same chain
    /// of conditions repeatedly.
    Constructed(Identifier),
}

#[derive(Clone, Copy)]
pub enum ReturnGuard {
    /// There were no conditionals on the path to this return statement.
    None,

    /// There was a chain of conditionals on the path to this return statement,
    /// and they are true iff this Identifier is true.
    Unconstructed(Identifier),

    /// There was a chain of conditionals on the path to this return statement.`
    Constructed {
        /// True iff the conditionals on the path to this return statement are true.
        plain: Identifier,

        /// True iff any of the guards to return statements so far encountered
        /// are true. We cache this to guard asserts against early returns.
        any_return: Identifier,
    },
}

impl Guard {
    fn identifier(self) -> Identifier {
        match self {
            Guard::Constructed(id) | Guard::Unconstructed(id) => id,
        }
    }
}

pub struct Flattener<'a> {
    /// The symbol table associated with the program.
    pub(crate) symbol_table: &'a SymbolTable,
    /// A mapping between node IDs and their types.
    pub(crate) type_table: &'a TypeTable,
    /// A counter used to generate unique node IDs.
    pub(crate) node_builder: &'a NodeBuilder,
    /// A struct used to construct (unique) assignment statements.
    pub(crate) assigner: &'a Assigner,

    /// A stack of condition `Expression`s visited up to the current point in the AST.
    pub(crate) condition_stack: Vec<Guard>,

    /// A list containing tuples of guards and expressions associated `ReturnStatement`s.
    /// A guard is an expression that evaluates to true on the execution path of the `ReturnStatement`.
    /// Note that returns are inserted in the order they are encountered during a pre-order traversal of the AST.
    /// Note that type checking guarantees that there is at most one return in a basic block.
    pub(crate) returns: Vec<(ReturnGuard, ReturnStatement)>,

    /// The program name.
    pub(crate) program: Option<Symbol>,
    /// Whether the function is an async function.
    pub(crate) is_async: bool,
}

impl<'a> Flattener<'a> {
    pub(crate) fn new(
        symbol_table: &'a SymbolTable,
        type_table: &'a TypeTable,
        node_builder: &'a NodeBuilder,
        assigner: &'a Assigner,
    ) -> Self {
        Self {
            symbol_table,
            type_table,
            node_builder,
            assigner,
            condition_stack: Vec::new(),
            returns: Vec::new(),
            program: None,
            is_async: false,
        }
    }

    /// Construct an early return guard.
    ///
    /// That is, an Identifier assigned to a boolean that is true iff some early return was taken.
    pub(crate) fn construct_early_return_guard(&mut self) -> Option<(Identifier, Vec<Statement>)> {
        if self.returns.is_empty() {
            return None;
        }

        if self.returns.iter().any(|g| matches!(g.0, ReturnGuard::None)) {
            // There was a return with no conditions, so we should simple return True.
            let place = Identifier {
                name: self.assigner.unique_symbol("true", "$"),
                span: Default::default(),
                id: self.node_builder.next_id(),
            };
            let statement = self.simple_assign_statement(
                place,
                Expression::Literal(Literal::Boolean(true, Default::default(), self.node_builder.next_id())),
            );
            return Some((place, vec![statement]));
        }

        // All guards up to a certain point in the stack should be constructed.
        // Find the first unconstructed one.
        let start_i = (0..self.returns.len())
            .rev()
            .take_while(|&i| matches!(self.returns[i].0, ReturnGuard::Unconstructed(_)))
            .last()
            .unwrap_or(self.returns.len());

        let mut statements = Vec::with_capacity(self.returns.len() - start_i);

        for i in start_i..self.returns.len() {
            let ReturnGuard::Unconstructed(identifier) = self.returns[i].0 else {
                unreachable!("We assured above that all guards after the index are Unconstructed.");
            };
            if i == 0 {
                self.returns[i].0 = ReturnGuard::Constructed { plain: identifier, any_return: identifier };
                continue;
            }

            let ReturnGuard::Constructed { any_return: previous_identifier, .. } = self.returns[i - 1].0 else {
                unreachable!("We're always at an index where previous guards were Constructed.");
            };

            let identifier_expression = Expression::Identifier(identifier);
            let previous_expression = Expression::Identifier(previous_identifier);

            // Construct an Or of the two expressions.
            let binary = Expression::Binary(BinaryExpression {
                op: BinaryOperation::Or,
                left: Box::new(previous_expression),
                right: Box::new(identifier_expression),
                span: Default::default(),
                id: {
                    let id = self.node_builder.next_id();
                    self.type_table.insert(id, Type::Boolean);
                    id
                },
            });

            // Assign that Or to a new Identifier.
            let place = Identifier {
                name: self.assigner.unique_symbol("guard", "$"),
                span: Default::default(),
                id: self.node_builder.next_id(),
            };
            statements.push(self.simple_assign_statement(place, binary));

            // Make that assigned Identifier the constructed guard.
            self.returns[i].0 = ReturnGuard::Constructed { plain: identifier, any_return: place };
        }

        let ReturnGuard::Constructed { any_return, .. } = self.returns.last().unwrap().0 else {
            unreachable!("Above we made all guards Constructed.");
        };

        Some((any_return, statements))
    }

    /// Construct a guard from the current state of the condition stack.
    ///
    /// That is, a boolean expression which is true iff we've followed the branches
    /// that led to the current point in the Leo code.
    pub(crate) fn construct_guard(&mut self) -> Option<(Identifier, Vec<Statement>)> {
        if self.condition_stack.is_empty() {
            return None;
        }

        // All guards up to a certain point in the stack should be constructed.
        // Find the first unconstructed one. Start the search at the end so we
        // don't repeatedly traverse the whole stack with repeated calls to this
        // function.
        let start_i = (0..self.condition_stack.len())
            .rev()
            .take_while(|&i| matches!(self.condition_stack[i], Guard::Unconstructed(_)))
            .last()
            .unwrap_or(self.condition_stack.len());

        let mut statements = Vec::with_capacity(self.condition_stack.len() - start_i);

        for i in start_i..self.condition_stack.len() {
            let identifier = self.condition_stack[i].identifier();
            if i == 0 {
                self.condition_stack[0] = Guard::Constructed(identifier);
                continue;
            }

            let previous = self.condition_stack[i - 1].identifier();
            let identifier_expression = Expression::Identifier(identifier);
            let previous_expression = Expression::Identifier(previous);

            // Construct an And of the two expressions.
            let binary = Expression::Binary(BinaryExpression {
                op: BinaryOperation::And,
                left: Box::new(previous_expression),
                right: Box::new(identifier_expression),
                span: Default::default(),
                id: {
                    // Create a new node ID for the binary expression.
                    let id = self.node_builder.next_id();
                    // Set the type of the node ID.
                    self.type_table.insert(id, Type::Boolean);
                    id
                },
            });

            // Assign that And to a new Identifier.
            let place = Identifier {
                name: self.assigner.unique_symbol("guard", "$"),
                span: Default::default(),
                id: self.node_builder.next_id(),
            };
            statements.push(self.simple_assign_statement(place, binary));

            // Make that assigned Identifier the constructed guard.
            self.condition_stack[i] = Guard::Constructed(place);
        }

        Some((self.condition_stack.last().unwrap().identifier(), statements))
    }

    /// Fold guards and expressions into a single expression.
    /// Note that this function assumes that at least one guard is present.
    pub(crate) fn fold_guards(
        &mut self,
        prefix: &str,
        mut guards: Vec<(Option<Expression>, Expression)>,
    ) -> (Expression, Vec<Statement>) {
        // Type checking guarantees that there exists at least one return statement in the function body.
        let (_, last_expression) = guards.pop().unwrap();

        match last_expression {
            // If the expression is a unit expression, then return it directly.
            Expression::Unit(_) => (last_expression, Vec::new()),
            // Otherwise, fold the guards and expressions into a single expression.
            _ => {
                // Produce a chain of ternary expressions and assignments for the guards.
                let mut statements = Vec::with_capacity(guards.len());

                // Helper to construct and store ternary assignments. e.g `$ret$0 = $var$0 ? $var$1 : $var$2`
                let mut construct_ternary_assignment =
                    |guard: Expression, if_true: Expression, if_false: Expression| {
                        let place = Identifier {
                            name: self.assigner.unique_symbol(prefix, "$"),
                            span: Default::default(),
                            id: self.node_builder.next_id(),
                        };
                        let (value, stmts) = self.reconstruct_ternary(TernaryExpression {
                            id: {
                                // Create a new node ID for the ternary expression.
                                let id = self.node_builder.next_id();
                                // Get the type of the node ID.
                                let type_ = match self.type_table.get(&if_true.id()) {
                                    Some(type_) => type_,
                                    None => unreachable!("Type checking guarantees that all expressions have a type."),
                                };
                                // Set the type of the node ID.
                                self.type_table.insert(id, type_);
                                id
                            },
                            condition: Box::new(guard),
                            if_true: Box::new(if_true),
                            if_false: Box::new(if_false),
                            span: Default::default(),
                        });
                        statements.extend(stmts);

                        match &value {
                            // If the expression is a tuple, then use it directly.
                            // This must be done to ensure that intermediate tuple assignments are not created.
                            Expression::Tuple(_) => value,
                            // Otherwise, assign the expression to a variable and return the variable.
                            _ => {
                                statements.push(self.simple_assign_statement(place, value));
                                Expression::Identifier(place)
                            }
                        }
                    };

                let expression = guards.into_iter().rev().fold(last_expression, |acc, (guard, expr)| match guard {
                    None => unreachable!("All expressions except for the last one must have a guard."),
                    // Note that type checking guarantees that all expressions have the same type.
                    Some(guard) => construct_ternary_assignment(guard, expr, acc),
                });

                (expression, statements)
            }
        }
    }

    /// A wrapper around `assigner.unique_simple_assign_statement` that updates `self.structs`.
    pub(crate) fn unique_simple_assign_statement(&mut self, expr: Expression) -> (Identifier, Statement) {
        // Create a new variable for the expression.
        let name = self.assigner.unique_symbol("$var", "$");
        // Construct the lhs of the assignment.
        let place = Identifier { name, span: Default::default(), id: self.node_builder.next_id() };
        // Construct the assignment statement.
        let statement = self.simple_assign_statement(place, expr);

        (place, statement)
    }

    /// A wrapper around `assigner.simple_assign_statement` that tracks the type of the lhs.
    pub(crate) fn simple_assign_statement(&mut self, lhs: Identifier, rhs: Expression) -> Statement {
        // Update the type table.
        let type_ = match self.type_table.get(&rhs.id()) {
            Some(type_) => type_,
            None => unreachable!("Type checking guarantees that all expressions have a type."),
        };
        self.type_table.insert(lhs.id(), type_);
        // Construct the statement.
        self.assigner.simple_assign_statement(lhs, rhs, self.node_builder.next_id())
    }

    /// Folds a list of return statements into a single return statement and adds the produced statements to the block.
    pub(crate) fn fold_returns(&mut self, block: &mut Block, returns: Vec<(Option<Expression>, ReturnStatement)>) {
        // If the list of returns is not empty, then fold them into a single return statement.
        if !returns.is_empty() {
            let mut return_expressions = Vec::with_capacity(returns.len());

            // Aggregate the return expressions and finalize arguments and their respective guards.
            for (guard, return_statement) in returns {
                return_expressions.push((guard.clone(), return_statement.expression));
            }

            // Fold the return expressions into a single expression.
            let (expression, stmts) = self.fold_guards("$ret", return_expressions);

            // Add all of the accumulated statements to the end of the block.
            block.statements.extend(stmts);

            // Add the `ReturnStatement` to the end of the block.
            block.statements.push(Statement::Return(ReturnStatement {
                expression,
                span: Default::default(),
                id: self.node_builder.next_id(),
            }));
        }
        // Otherwise, push a dummy return statement to the end of the block.
        else {
            block.statements.push(Statement::Return(ReturnStatement {
                expression: {
                    let id = self.node_builder.next_id();
                    Expression::Unit(UnitExpression { span: Default::default(), id })
                },
                span: Default::default(),
                id: self.node_builder.next_id(),
            }));
        }
    }

    pub(crate) fn ternary_array(
        &mut self,
        array: &ArrayType,
        condition: &Expression,
        first: &Identifier,
        second: &Identifier,
    ) -> (Expression, Vec<Statement>) {
        // Initialize a vector to accumulate any statements generated.
        let mut statements = Vec::new();
        // For each array element, construct a new ternary expression.
        let elements = (0..array.length())
            .map(|i| {
                // Create an assignment statement for the first access expression.
                let (first, stmt) =
                    self.unique_simple_assign_statement(Expression::Access(AccessExpression::Array(ArrayAccess {
                        array: Box::new(Expression::Identifier(*first)),
                        index: Box::new(Expression::Literal(Literal::Integer(
                            IntegerType::U32,
                            i.to_string(),
                            Default::default(),
                            {
                                // Create a new node ID for the literal.
                                let id = self.node_builder.next_id();
                                // Set the type of the node ID.
                                self.type_table.insert(id, Type::Integer(IntegerType::U32));
                                id
                            },
                        ))),
                        span: Default::default(),
                        id: {
                            // Create a new node ID for the access expression.
                            let id = self.node_builder.next_id();
                            // Set the type of the node ID.
                            self.type_table.insert(id, array.element_type().clone());
                            id
                        },
                    })));
                statements.push(stmt);
                // Create an assignment statement for the second access expression.
                let (second, stmt) =
                    self.unique_simple_assign_statement(Expression::Access(AccessExpression::Array(ArrayAccess {
                        array: Box::new(Expression::Identifier(*second)),
                        index: Box::new(Expression::Literal(Literal::Integer(
                            IntegerType::U32,
                            i.to_string(),
                            Default::default(),
                            {
                                // Create a new node ID for the literal.
                                let id = self.node_builder.next_id();
                                // Set the type of the node ID.
                                self.type_table.insert(id, Type::Integer(IntegerType::U32));
                                id
                            },
                        ))),
                        span: Default::default(),
                        id: {
                            // Create a new node ID for the access expression.
                            let id = self.node_builder.next_id();
                            // Set the type of the node ID.
                            self.type_table.insert(id, array.element_type().clone());
                            id
                        },
                    })));
                statements.push(stmt);

                // Recursively reconstruct the ternary expression.
                let (expression, stmts) = self.reconstruct_ternary(TernaryExpression {
                    condition: Box::new(condition.clone()),
                    // Access the member of the first expression.
                    if_true: Box::new(Expression::Identifier(first)),
                    // Access the member of the second expression.
                    if_false: Box::new(Expression::Identifier(second)),
                    span: Default::default(),
                    id: {
                        // Create a new node ID for the ternary expression.
                        let id = self.node_builder.next_id();
                        // Set the type of the node ID.
                        self.type_table.insert(id, array.element_type().clone());
                        id
                    },
                });

                // Accumulate any statements generated.
                statements.extend(stmts);

                expression
            })
            .collect();

        // Construct the array expression.
        let (expr, stmts) = self.reconstruct_array(ArrayExpression {
            elements,
            span: Default::default(),
            id: {
                // Create a node ID for the array expression.
                let id = self.node_builder.next_id();
                // Set the type of the node ID.
                self.type_table.insert(id, Type::Array(array.clone()));
                id
            },
        });

        // Accumulate any statements generated.
        statements.extend(stmts);

        // Create a new assignment statement for the array expression.
        let (identifier, statement) = self.unique_simple_assign_statement(expr);

        statements.push(statement);

        (Expression::Identifier(identifier), statements)
    }

    pub(crate) fn ternary_struct(
        &mut self,
        struct_: &Composite,
        condition: &Expression,
        first: &Identifier,
        second: &Identifier,
    ) -> (Expression, Vec<Statement>) {
        // Initialize a vector to accumulate any statements generated.
        let mut statements = Vec::new();
        // For each struct member, construct a new ternary expression.
        let members = struct_
            .members
            .iter()
            .map(|Member { identifier, type_, .. }| {
                // Create an assignment statement for the first access expression.
                let (first, stmt) =
                    self.unique_simple_assign_statement(Expression::Access(AccessExpression::Member(MemberAccess {
                        inner: Box::new(Expression::Identifier(*first)),
                        name: *identifier,
                        span: Default::default(),
                        id: {
                            // Create a new node ID for the access expression.
                            let id = self.node_builder.next_id();
                            // Set the type of the node ID.
                            self.type_table.insert(id, type_.clone());
                            id
                        },
                    })));
                statements.push(stmt);
                // Create an assignment statement for the second access expression.
                let (second, stmt) =
                    self.unique_simple_assign_statement(Expression::Access(AccessExpression::Member(MemberAccess {
                        inner: Box::new(Expression::Identifier(*second)),
                        name: *identifier,
                        span: Default::default(),
                        id: {
                            // Create a new node ID for the access expression.
                            let id = self.node_builder.next_id();
                            // Set the type of the node ID.
                            self.type_table.insert(id, type_.clone());
                            id
                        },
                    })));
                statements.push(stmt);
                // Recursively reconstruct the ternary expression.
                let (expression, stmts) = self.reconstruct_ternary(TernaryExpression {
                    condition: Box::new(condition.clone()),
                    // Access the member of the first expression.
                    if_true: Box::new(Expression::Identifier(first)),
                    // Access the member of the second expression.
                    if_false: Box::new(Expression::Identifier(second)),
                    span: Default::default(),
                    id: {
                        // Create a new node ID for the ternary expression.
                        let id = self.node_builder.next_id();
                        // Set the type of the node ID.
                        self.type_table.insert(id, type_.clone());
                        id
                    },
                });

                // Accumulate any statements generated.
                statements.extend(stmts);

                StructVariableInitializer {
                    identifier: *identifier,
                    expression: Some(expression),
                    span: Default::default(),
                    id: self.node_builder.next_id(),
                }
            })
            .collect();

        let (expr, stmts) = self.reconstruct_struct_init(StructExpression {
            name: struct_.identifier,
            members,
            span: Default::default(),
            id: {
                // Create a new node ID for the struct expression.
                let id = self.node_builder.next_id();
                // Set the type of the node ID.
                self.type_table
                    .insert(id, Type::Composite(CompositeType { id: struct_.identifier, program: struct_.external }));
                id
            },
        });

        // Accumulate any statements generated.
        statements.extend(stmts);

        // Create a new assignment statement for the struct expression.
        let (identifier, statement) = self.unique_simple_assign_statement(expr);

        statements.push(statement);

        (Expression::Identifier(identifier), statements)
    }

    pub(crate) fn ternary_tuple(
        &mut self,
        tuple_type: &TupleType,
        condition: &Expression,
        first: &Identifier,
        second: &Identifier,
    ) -> (Expression, Vec<Statement>) {
        // Initialize a vector to accumulate any statements generated.
        let mut statements = Vec::new();
        // For each tuple element, construct a new ternary expression.
        let elements = tuple_type
            .elements()
            .iter()
            .enumerate()
            .map(|(i, type_)| {
                // Create an assignment statement for the first access expression.
                let (first, stmt) =
                    self.unique_simple_assign_statement(Expression::Access(AccessExpression::Tuple(TupleAccess {
                        tuple: Box::new(Expression::Identifier(*first)),
                        index: NonNegativeNumber::from(i),
                        span: Default::default(),
                        id: {
                            // Create a new node ID for the access expression.
                            let id = self.node_builder.next_id();
                            // Set the type of the node ID.
                            self.type_table.insert(id, type_.clone());
                            id
                        },
                    })));
                statements.push(stmt);
                // Create an assignment statement for the second access expression.
                let (second, stmt) =
                    self.unique_simple_assign_statement(Expression::Access(AccessExpression::Tuple(TupleAccess {
                        tuple: Box::new(Expression::Identifier(*second)),
                        index: NonNegativeNumber::from(i),
                        span: Default::default(),
                        id: {
                            // Create a new node ID for the access expression.
                            let id = self.node_builder.next_id();
                            // Set the type of the node ID.
                            self.type_table.insert(id, type_.clone());
                            id
                        },
                    })));
                statements.push(stmt);

                // Recursively reconstruct the ternary expression.
                let (expression, stmts) = self.reconstruct_ternary(TernaryExpression {
                    condition: Box::new(condition.clone()),
                    // Access the member of the first expression.
                    if_true: Box::new(Expression::Identifier(first)),
                    // Access the member of the second expression.
                    if_false: Box::new(Expression::Identifier(second)),
                    span: Default::default(),
                    id: {
                        // Create a new node ID for the ternary expression.
                        let id = self.node_builder.next_id();
                        // Set the type of the node ID.
                        self.type_table.insert(id, type_.clone());
                        id
                    },
                });

                // Accumulate any statements generated.
                statements.extend(stmts);

                expression
            })
            .collect();

        // Construct the tuple expression.
        let tuple = TupleExpression {
            elements,
            span: Default::default(),
            id: {
                // Create a new node ID for the tuple expression.
                let id = self.node_builder.next_id();
                // Set the type of the node ID.
                self.type_table.insert(id, Type::Tuple(tuple_type.clone()));
                id
            },
        };
        let (expr, stmts) = self.reconstruct_tuple(tuple.clone());

        // Accumulate any statements generated.
        statements.extend(stmts);

        // Create a new assignment statement for the tuple expression.
        let (identifier, statement) = self.unique_simple_assign_statement(expr);

        statements.push(statement);

        (Expression::Identifier(identifier), statements)
    }
}