leo_passes/function_inlining/inline_program.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
// Copyright (C) 2019-2025 Provable Inc.
// This file is part of the Leo library.
// The Leo library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// The Leo library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::FunctionInliner;
use leo_ast::{Function, ProgramReconstructor, ProgramScope, StatementReconstructor};
use leo_span::Symbol;
use indexmap::IndexMap;
impl ProgramReconstructor for FunctionInliner<'_> {
fn reconstruct_program_scope(&mut self, input: ProgramScope) -> ProgramScope {
// Set the program name.
self.program = Some(input.program_id.name.name);
// Get the post-order ordering of the call graph.
// Note that the post-order always contains all nodes in the call graph.
// Note that the unwrap is safe since type checking guarantees that the call graph is acyclic.
let order = self.call_graph.post_order().unwrap();
// Construct map to provide faster lookup of functions
let mut function_map: IndexMap<Symbol, Function> = input.functions.into_iter().collect();
// Reconstruct and accumulate each of the functions in post-order.
for function_name in &order {
// None: If `function_name` is not in `input.functions`, then it must be an external function.
// TODO: Check that this is indeed an external function. Requires a redesign of the symbol table.
if let Some(function) = function_map.shift_remove(function_name) {
// Reconstruct the function.
let reconstructed_function = self.reconstruct_function(function);
// Add the reconstructed function to the mapping.
self.reconstructed_functions.push((*function_name, reconstructed_function));
}
}
// This is a sanity check to ensure that functions in the program scope have been processed.
assert!(function_map.is_empty(), "All functions in the program scope should have been processed.");
// Note that this intentionally clears `self.reconstructed_functions` for the next program scope.
let functions = core::mem::take(&mut self.reconstructed_functions).into_iter().collect();
ProgramScope {
program_id: input.program_id,
structs: input.structs,
mappings: input.mappings,
functions,
consts: input.consts,
span: input.span,
}
}
fn reconstruct_function(&mut self, input: Function) -> Function {
Function {
annotations: input.annotations,
variant: input.variant,
identifier: input.identifier,
input: input.input,
output: input.output,
output_type: input.output_type,
block: {
// Set the `is_async` flag before reconstructing the block.
self.is_async = input.variant.is_async_function();
// Reconstruct the block.
let block = self.reconstruct_block(input.block).0;
// Reset the `is_async` flag.
self.is_async = false;
block
},
span: input.span,
id: input.id,
}
}
}