leo_passes/static_analysis/
future_checker.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
// Copyright (C) 2019-2025 Provable Inc.
// This file is part of the Leo library.

// The Leo library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// The Leo library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.

use crate::TypeTable;

use leo_ast::{CoreFunction, Expression, ExpressionVisitor, Function, Node, StatementVisitor, Type};
use leo_errors::{StaticAnalyzerError, emitter::Handler};

/// Error if futures are used improperly.
///
/// This prevents, for instance, a bare call which creates an unused future.
pub fn future_check_function(function: &Function, type_table: &TypeTable, handler: &Handler) {
    let mut future_checker = FutureChecker { type_table, handler };
    future_checker.visit_block(&function.block);
}

#[derive(Clone, Copy, Debug, Default)]
enum Position {
    #[default]
    Misc,
    Await,
    TupleAccess,
    Return,
    FunctionArgument,
    LastTupleLiteral,
    Definition,
}

struct FutureChecker<'a> {
    type_table: &'a TypeTable,
    handler: &'a Handler,
}

impl<'a> FutureChecker<'a> {
    fn emit_err(&self, err: StaticAnalyzerError) {
        self.handler.emit_err(err);
    }
}

impl ExpressionVisitor for FutureChecker<'_> {
    type AdditionalInput = Position;
    type Output = ();

    fn visit_expression(&mut self, input: &Expression, additional: &Self::AdditionalInput) -> Self::Output {
        use Position::*;
        let is_call = matches!(input, Expression::Call(..));
        match self.type_table.get(&input.id()) {
            Some(Type::Future(..)) if is_call => {
                // A call producing a Future may appear in any of these positions.
                if !matches!(additional, Await | Return | FunctionArgument | LastTupleLiteral | Definition) {
                    self.emit_err(StaticAnalyzerError::misplaced_future(input.span()));
                }
            }
            Some(Type::Future(..)) => {
                // A Future expression that's not a call may appear in any of these positions.
                if !matches!(additional, Await | Return | FunctionArgument | LastTupleLiteral | TupleAccess) {
                    self.emit_err(StaticAnalyzerError::misplaced_future(input.span()));
                }
            }
            Some(Type::Tuple(tuple)) if !matches!(tuple.elements().last(), Some(Type::Future(_))) => {}
            Some(Type::Tuple(..)) if is_call => {
                // A call producing a Tuple ending in a Future may appear in any of these positions.
                if !matches!(additional, Return | Definition) {
                    self.emit_err(StaticAnalyzerError::misplaced_future(input.span()));
                }
            }
            Some(Type::Tuple(..)) => {
                // A Tuple ending in a Future that's not a call may appear in any of these positions.
                if !matches!(additional, Return | TupleAccess) {
                    self.emit_err(StaticAnalyzerError::misplaced_future(input.span()));
                }
            }
            _ => {}
        }

        match input {
            Expression::Access(access) => self.visit_access(access, &Position::Misc),
            Expression::Array(array) => self.visit_array(array, &Position::Misc),
            Expression::Binary(binary) => self.visit_binary(binary, &Position::Misc),
            Expression::Call(call) => self.visit_call(call, &Position::Misc),
            Expression::Cast(cast) => self.visit_cast(cast, &Position::Misc),
            Expression::Struct(struct_) => self.visit_struct_init(struct_, &Position::Misc),
            Expression::Err(err) => self.visit_err(err, &Position::Misc),
            Expression::Identifier(identifier) => self.visit_identifier(identifier, &Position::Misc),
            Expression::Literal(literal) => self.visit_literal(literal, &Position::Misc),
            Expression::Locator(locator) => self.visit_locator(locator, &Position::Misc),
            Expression::Ternary(ternary) => self.visit_ternary(ternary, &Position::Misc),
            Expression::Tuple(tuple) => self.visit_tuple(tuple, additional),
            Expression::Unary(unary) => self.visit_unary(unary, &Position::Misc),
            Expression::Unit(unit) => self.visit_unit(unit, &Position::Misc),
        }
    }

    fn visit_access(&mut self, input: &leo_ast::AccessExpression, _additional: &Self::AdditionalInput) -> Self::Output {
        match input {
            leo_ast::AccessExpression::Array(array) => {
                self.visit_expression(&array.array, &Position::Misc);
                self.visit_expression(&array.index, &Position::Misc);
            }
            leo_ast::AccessExpression::AssociatedFunction(function) => {
                let core_function = CoreFunction::from_symbols(function.variant.name, function.name.name)
                    .expect("Typechecking guarantees that this function exists.");
                let position =
                    if core_function == CoreFunction::FutureAwait { Position::Await } else { Position::Misc };
                function.arguments.iter().for_each(|arg| {
                    self.visit_expression(arg, &position);
                });
            }
            leo_ast::AccessExpression::Member(member) => {
                self.visit_expression(&member.inner, &Position::Misc);
            }
            leo_ast::AccessExpression::Tuple(tuple) => {
                self.visit_expression(&tuple.tuple, &Position::TupleAccess);
            }
            _ => {}
        }

        Default::default()
    }

    fn visit_call(&mut self, input: &leo_ast::CallExpression, _additional: &Self::AdditionalInput) -> Self::Output {
        input.arguments.iter().for_each(|expr| {
            self.visit_expression(expr, &Position::FunctionArgument);
        });
        Default::default()
    }

    fn visit_tuple(&mut self, input: &leo_ast::TupleExpression, additional: &Self::AdditionalInput) -> Self::Output {
        let next_position = match additional {
            Position::Definition | Position::Return => Position::LastTupleLiteral,
            _ => Position::Misc,
        };
        let mut iter = input.elements.iter().peekable();
        while let Some(expr) = iter.next() {
            let position = if iter.peek().is_some() { &Position::Misc } else { &next_position };
            self.visit_expression(expr, position);
        }
        Default::default()
    }
}

impl StatementVisitor for FutureChecker<'_> {
    fn visit_definition(&mut self, input: &leo_ast::DefinitionStatement) {
        self.visit_expression(&input.value, &Position::Definition);
    }

    fn visit_return(&mut self, input: &leo_ast::ReturnStatement) {
        self.visit_expression(&input.expression, &Position::Return);
    }
}