leo_passes/static_single_assignment/rename_expression.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
// Copyright (C) 2019-2025 Provable Inc.
// This file is part of the Leo library.
// The Leo library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// The Leo library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::StaticSingleAssigner;
use leo_ast::{
AccessExpression,
ArrayAccess,
ArrayExpression,
AssociatedFunction,
BinaryExpression,
CallExpression,
CastExpression,
Composite,
Expression,
ExpressionConsumer,
Identifier,
Literal,
Location,
LocatorExpression,
MemberAccess,
Statement,
StructExpression,
StructVariableInitializer,
TernaryExpression,
TupleAccess,
TupleExpression,
UnaryExpression,
UnitExpression,
};
use leo_span::{Symbol, sym};
use indexmap::IndexMap;
impl ExpressionConsumer for StaticSingleAssigner<'_> {
type Output = (Expression, Vec<Statement>);
/// Consumes an access expression, accumulating any statements that are generated.
fn consume_access(&mut self, input: AccessExpression) -> Self::Output {
let (expr, mut statements) = match input {
AccessExpression::AssociatedFunction(function) => {
let mut statements = Vec::new();
(
AccessExpression::AssociatedFunction(AssociatedFunction {
variant: function.variant,
name: function.name,
arguments: function
.arguments
.into_iter()
.map(|arg| {
let (arg, mut stmts) = self.consume_expression(arg);
statements.append(&mut stmts);
arg
})
.collect(),
span: function.span,
id: function.id,
}),
statements,
)
}
AccessExpression::Member(member) => {
// TODO: Create AST node for native access expressions?
// If the access expression is of the form `self.<name>`, then don't rename it.
if let Expression::Identifier(Identifier { name, .. }) = *member.inner {
if name == sym::SelfLower {
return (Expression::Access(AccessExpression::Member(member)), Vec::new());
}
}
let (expr, statements) = self.consume_expression(*member.inner);
(
AccessExpression::Member(MemberAccess {
inner: Box::new(expr),
name: member.name,
span: member.span,
id: member.id,
}),
statements,
)
}
AccessExpression::Tuple(tuple) => {
let (expr, statements) = self.consume_expression(*tuple.tuple);
(
AccessExpression::Tuple(TupleAccess {
tuple: Box::new(expr),
index: tuple.index,
span: tuple.span,
id: tuple.id,
}),
statements,
)
}
AccessExpression::Array(input) => {
let (array, statements) = self.consume_expression(*input.array);
(
AccessExpression::Array(ArrayAccess {
array: Box::new(array),
index: input.index,
span: input.span,
id: input.id,
}),
statements,
)
}
expr => (expr, Vec::new()),
};
let (place, statement) = self.unique_simple_assign_statement(Expression::Access(expr));
statements.push(statement);
(Expression::Identifier(place), statements)
}
/// Consumes an array expression, accumulating any statements that are generated.
fn consume_array(&mut self, input: ArrayExpression) -> Self::Output {
let mut statements = Vec::new();
// Process the elements, accumulating any statements produced.
let elements = input
.elements
.into_iter()
.map(|element| {
let (element, mut stmts) = self.consume_expression(element);
statements.append(&mut stmts);
element
})
.collect();
// Construct and accumulate a new assignment statement for the array expression.
let (place, statement) = self.unique_simple_assign_statement(Expression::Array(ArrayExpression {
elements,
span: input.span,
id: input.id,
}));
statements.push(statement);
(Expression::Identifier(place), statements)
}
/// Consumes a binary expression, accumulating any statements that are generated.
fn consume_binary(&mut self, input: BinaryExpression) -> Self::Output {
// Reconstruct the lhs of the binary expression.
let (left_expression, mut statements) = self.consume_expression(*input.left);
// Reconstruct the rhs of the binary expression.
let (right_expression, mut right_statements) = self.consume_expression(*input.right);
// Accumulate any statements produced.
statements.append(&mut right_statements);
// Construct and accumulate a unique assignment statement storing the result of the binary expression.
let (place, statement) = self.unique_simple_assign_statement(Expression::Binary(BinaryExpression {
left: Box::new(left_expression),
right: Box::new(right_expression),
op: input.op,
span: input.span,
id: input.id,
}));
statements.push(statement);
(Expression::Identifier(place), statements)
}
/// Consumes a call expression without visiting the function name, accumulating any statements that are generated.
fn consume_call(&mut self, input: CallExpression) -> Self::Output {
let mut statements = Vec::new();
// Process the arguments, accumulating any statements produced.
let arguments = input
.arguments
.into_iter()
.map(|argument| {
let (argument, mut stmts) = self.consume_expression(argument);
statements.append(&mut stmts);
argument
})
.collect();
// Construct and accumulate a new assignment statement for the call expression.
let (place, statement) = self.unique_simple_assign_statement(Expression::Call(CallExpression {
// Note that we do not rename the function name.
function: input.function,
// Consume the arguments.
arguments,
program: input.program,
span: input.span,
id: input.id,
}));
statements.push(statement);
(Expression::Identifier(place), statements)
}
/// Consumes a cast expression, accumulating any statements that are generated.
fn consume_cast(&mut self, input: CastExpression) -> Self::Output {
// Reconstruct the expression being casted.
let (expression, mut statements) = self.consume_expression(*input.expression);
// Construct and accumulate a unique assignment statement storing the result of the cast expression.
let (place, statement) = self.unique_simple_assign_statement(Expression::Cast(CastExpression {
expression: Box::new(expression),
type_: input.type_,
span: input.span,
id: input.id,
}));
statements.push(statement);
(Expression::Identifier(place), statements)
}
/// Consumes a struct initialization expression with renamed variables, accumulating any statements that are generated.
fn consume_struct_init(&mut self, input: StructExpression) -> Self::Output {
let mut statements = Vec::new();
// Process the members, accumulating any statements produced.
let members: Vec<StructVariableInitializer> = input
.members
.into_iter()
.map(|arg| {
let (expression, mut stmts) = match &arg.expression.is_some() {
// If the expression is None, then `arg` is a `StructVariableInitializer` of the form `<id>,`.
// In this case, we must consume the identifier and produce an initializer of the form `<id>: <renamed_id>`.
false => self.consume_identifier(arg.identifier),
// If expression is `Some(..)`, then `arg is a `StructVariableInitializer` of the form `<id>: <expr>,`.
// In this case, we must consume the expression.
true => self.consume_expression(arg.expression.unwrap()),
};
// Accumulate any statements produced.
statements.append(&mut stmts);
// Return the new member.
StructVariableInitializer {
identifier: arg.identifier,
expression: Some(expression),
span: arg.span,
id: arg.id,
}
})
.collect();
// Reorder the members to match that of the struct definition.
// Lookup the struct definition.
let struct_definition: &Composite = self
.symbol_table
.lookup_record(Location::new(self.program.unwrap(), input.name.name))
.or_else(|| self.symbol_table.lookup_struct(input.name.name))
.expect("Type checking guarantees this definition exists.");
// Initialize the list of reordered members.
let mut reordered_members = Vec::with_capacity(members.len());
// Collect the members of the init expression into a map.
let mut member_map: IndexMap<Symbol, StructVariableInitializer> =
members.into_iter().map(|member| (member.identifier.name, member)).collect();
// If we are initializing a record, add the `owner` first.
// Note that type checking guarantees that the above fields exist.
if struct_definition.is_record {
// Add the `owner` field.
// Note that the `unwrap` is safe, since type checking guarantees that the member exists.
reordered_members.push(member_map.shift_remove(&sym::owner).unwrap());
}
// For each member of the struct definition, push the corresponding member of the init expression.
for member in &struct_definition.members {
// If the member is part of a record and it is `owner` then we have already added it.
if !(struct_definition.is_record && matches!(member.identifier.name, sym::owner)) {
// Lookup and push the member of the init expression.
// Note that the `unwrap` is safe, since type checking guarantees that the member exists.
reordered_members.push(member_map.shift_remove(&member.identifier.name).unwrap());
}
}
// Construct and accumulate a new assignment statement for the struct expression.
let (place, statement) = self.unique_simple_assign_statement(Expression::Struct(StructExpression {
name: input.name,
span: input.span,
members: reordered_members,
id: input.id,
}));
statements.push(statement);
(Expression::Identifier(place), statements)
}
/// Produces a new `Identifier` with a unique name.
fn consume_identifier(&mut self, identifier: Identifier) -> Self::Output {
let name = match self.is_lhs {
// If consuming the left-hand side of a definition or assignment, a new unique name is introduced.
true => {
let new_name = self.assigner.unique_symbol(identifier.name, "$");
self.rename_table.update(identifier.name, new_name, identifier.id);
new_name
}
// Otherwise, we look up the previous name in the `RenameTable`.
// Note that we do not panic if the identifier is not found in the rename table.
// Variables that do not exist in the rename table are ones that have been introduced during the SSA pass.
// These variables are never re-assigned, and will never have an entry in the rename-table.
false => *self.rename_table.lookup(identifier.name).unwrap_or(&identifier.name),
};
(Expression::Identifier(Identifier { name, span: identifier.span, id: identifier.id }), Default::default())
}
/// Consumes and returns the literal without making any modifications.
fn consume_literal(&mut self, input: Literal) -> Self::Output {
// Construct and accumulate a new assignment statement for the literal.
let (place, statement) = self.unique_simple_assign_statement(Expression::Literal(input));
(Expression::Identifier(place), vec![statement])
}
/// Consumes and returns the locator expression without making any modifications
fn consume_locator(&mut self, input: LocatorExpression) -> Self::Output {
(Expression::Locator(input), Vec::new())
}
/// Consumes a ternary expression, accumulating any statements that are generated.
fn consume_ternary(&mut self, input: TernaryExpression) -> Self::Output {
// Reconstruct the condition of the ternary expression.
let (cond_expr, mut statements) = self.consume_expression(*input.condition);
// Reconstruct the if-true case of the ternary expression.
let (if_true_expr, mut if_true_statements) = self.consume_expression(*input.if_true);
// Reconstruct the if-false case of the ternary expression.
let (if_false_expr, mut if_false_statements) = self.consume_expression(*input.if_false);
// Accumulate any statements produced.
statements.append(&mut if_true_statements);
statements.append(&mut if_false_statements);
// Construct and accumulate a unique assignment statement storing the result of the ternary expression.
let (place, statement) = self.unique_simple_assign_statement(Expression::Ternary(TernaryExpression {
condition: Box::new(cond_expr),
if_true: Box::new(if_true_expr),
if_false: Box::new(if_false_expr),
span: input.span,
id: input.id,
}));
statements.push(statement);
(Expression::Identifier(place), statements)
}
/// Consumes a tuple expression, accumulating any statements that are generated
fn consume_tuple(&mut self, input: TupleExpression) -> Self::Output {
let mut statements = Vec::new();
// Process the elements, accumulating any statements produced.
let elements = input
.elements
.into_iter()
.map(|element| {
let (element, mut stmts) = self.consume_expression(element);
statements.append(&mut stmts);
element
})
.collect();
// Construct and accumulate a new assignment statement for the tuple expression.
let (place, statement) = self.unique_simple_assign_statement(Expression::Tuple(TupleExpression {
elements,
span: input.span,
id: input.id,
}));
statements.push(statement);
(Expression::Identifier(place), statements)
}
/// Consumes a unary expression, accumulating any statements that are generated.
fn consume_unary(&mut self, input: UnaryExpression) -> Self::Output {
// Reconstruct the operand of the unary expression.
let (receiver, mut statements) = self.consume_expression(*input.receiver);
// Construct and accumulate a new assignment statement for the unary expression.
let (place, statement) = self.unique_simple_assign_statement(Expression::Unary(UnaryExpression {
op: input.op,
receiver: Box::new(receiver),
span: input.span,
id: input.id,
}));
statements.push(statement);
(Expression::Identifier(place), statements)
}
fn consume_unit(&mut self, input: UnitExpression) -> Self::Output {
(Expression::Unit(input), Default::default())
}
}